1	Global proteomics analysis of bone marrow: establishing TLN1 and CEP55 as potential
2	markers for myelodysplastic syndrome
3	
4	(TLN1 and CEP55 expression in myelodysplastic syndromes)
5	
6	Arlindo A. Moura ^{1*} , Maria J. B. Bezerra ¹ , Aline M. A. Martins ² , Raphaela M. Oliveira ² ,
7	Arabela G. Viana ¹ , Daniela P. Borges ³ , Roberta T. G. Oliveira ³ , Guilherme G. C. Carvalho ⁴ ,
8	Carlos R. K. Paier ⁵ , Kaio M. Farias ⁴ , Marcelo V. Sousa ² , Wagner Fontes ² , Carlos A. O.
9	Ricart ² , Maria E. A. Moraes ⁵ , Cristiana L. M. Furtado ⁵ , Silvia M. M. Magalhaes ³ , Manoel O.
10	Moraes-Filho ⁵ , Claudia Pessoa ^{4*} , Ronald F. Pinheiro ^{3*}
11	
12	¹ Department of Animal Science, Drug Research and Development Center, Federal University
13	of Ceará, Fortaleza, Brazil.
14	² Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasilia,
15	Brazil.
16	³ Department of Clinical Medicine, The School of Medicine, Drug Research and Development
17	Center, Federal University of Ceará, Fortaleza, Brazil.
18	⁴ Department of Physiology and Pharmacology, Drug Research and Development Center,
19	Federal University of Ceará, Fortaleza, Brazil.
20	⁵ Graduate Program in Translational Medicine, Drug Research and Development Center,
21	Federal University of Ceará, Fortaleza, Brazil.
22	
23 24 25 26 27 28	*Corresponding authors: Dr. Ronald F. Pinheiro (pinheirorfeitosa@gmail.com) Dr. Arlindo A. Moura (arlindo.moura@gmail.com) Dr. Claudia Pessoa (cpessoa@ufc.br) Department of Clinical Medicine Drug Research and Development Center

1 2 3 4 5 6 7 8	29 30 31 32 33	The School of Medicine Federal University of Ceará Rua Coronel Nunes de Melo, 1000 Fortaleza, CE, Brazil - 60430-275
9 10 11	34 35 36	Key words: myelodysplastic syndrome TLN1_CEP55_bone marrow_proteomics_karvotype
12 13 14 15 16	37	
17 18 19 20 21		
22 23 24 25 26		
27 28 29 30 31 32 33		
34 35 36 37 38 39		
40 41 42 43 44		
45 46 47 48 49 50		
50 51 52 53 54 55		
56 57 58 59 60		

38 Abstract

Myelodysplastic syndrome (MDS) is a hematological disorder characterized by abnormal stem cell differentiation and high risk of acute myeloid leukemia transformation. Treatment options for MDS are still limited, making the identification of molecular signatures for MDS progression a vital task. Thus, we evaluated the proteome of bone marrow plasma from patients (n = 28) diagnosed with MDS with ring sideroblasts (MDS-RS) and MDS with blasts in the bone marrow (MDS-EB), using label-free mass spectrometry. This strategy allowed the identification of 1,194 proteins in the bone marrow plasma samples. Polyubiquitin-C (UBC), Moesin (MSN) and Talin-1 (TLN1) showed the highest abundances in MDS-EB and Centrosomal protein of 55 kDa (CEP55), the highest relative abundance in the bone marrow plasma of MDS-RS patients. In a follow up, validation study, expressions of UBC, MSN, TLN1 and CEP55 genes were evaluated in bone marrow mononuclear cells from 45 patients, using qPCR. This second cohort included only seven patients of the first study. CEP55, MSN and UBC expressions were similar in mononuclear cells from MDS-RS and MDS-EB individuals. However, *TLN1* gene expression was greater in mononuclear cells from MDS-RS (p = 0.049) as compared to MDS-EB patients. Irrespective of MDS subtype, *CEP55* expression was higher (p = 0.045) in MDS patients with abnormal karyotypes, while MSN, UBC and TALINI transcripts were similar in MDS with normal vs. abnormal karyotypes. In conclusion, proteomic and gene expression approaches brought evidence of altered TLN1 and CEP55 expressions in cellular and noncellular bone marrow compartments of patients with low-risk (MDS-RS) and high-risk (MDS-EB) myelodysplastic syndromes and with normal vs. abnormal karyotypes. As MDS is characterized by disrupted apoptosis and chromosomal alterations, leading to mitotic slippage, TLN1 and CEP55 represent potential markers for MDS prognosis and/or targeted therapy.

 Myelodysplastic syndromes (MDS) are hematologic stem cell malignancies associated with cytopenias, bone marrow insufficiency and anemia¹. The pathogenesis of MDS relates to disruption of stem cell development, increased apoptosis, mutations in splicing factors and DNA repair, altered DNA methylation of tumor suppressor genes or proto-oncogenes and immune derangement^{2–4}. According to the International Prognostic System (IPSS-R), MDS is grouped in very low, low, intermediate very high and high-risk disorders, depending on the pathogenesis and related alterations, and risk of acute myeloid leukemia (AML) transformation⁵.

Myelodysplastic syndrome with ring sideroblasts (MDS-RS) is characterized by bone marrow dysplasia, cytopenia, ring sideroblasts $\geq 15\%$ of bone marrow precursors, presence of SF3B1 mutation and low-risk of AML transformation^{6,7}. Ring sideroblasts are erythroid precursors with abnormal accumulation of iron inside mitochondria and MDS-RS cases have stem cells with abnormal erythroid colony formation with failure of terminal erythroid differentiation (TED)⁸. TED was also reported in high-risk MDS⁸, characterized by excess blasts (MDS-EB), 5-19% myeloblasts in the bone marrow, with up to 40% of all MDS cases and a high-risk of AML transformation^{6,9,10}. Low-risk MDS, such as myelodysplastic syndrome with ring sideroblasts, commonly presents symptoms of anemia and proper response to erythropoietin treatment⁸. MDS with excess blasts is linked to high-risk karyotypes such as monosomy seven, complex karyotype and mutations of genes that control disturbance of apoptosis (TP53) and DNA repair, stem cell maturation (RUNX1) and histone modifications $(ASXL)^{11}$.

The bone marrow contains cellular and non-cellular components that modulate the functional status of hematopoietic stem cells¹², cell-cell and cell-extracellular matrix interactions, and intracellular signaling¹³. Alterations in the biochemistry and synthesis of bone

marrow factors interfere with hematopoiesis and potentially trigger aberrant mechanisms that define MDS pathobiology. In fact, pronounced differences occur in the proteome of bone marrow plasma of patients with AML when to healthy ones¹⁴, with upregulated and downregulated proteins associated with chemokine and cytokine signaling pathways. Protein profiles are also altered in blood and bone marrow plasma of patients with low and high-risk lymphocytic leukemia (Braoudaki et al.¹⁵). The proteome of bone marrow cellular compartments and blood plasma were shifted in patients with AML¹⁶ and plasma from patients diagnosed with MDS had decreased levels of CXC chemokine ligands 4 and 7¹⁷. Altered plasma proteins have been detected in MDS patients with refractory anemia and with ringed sideroblasts¹⁸ and excess blasts¹⁹. Other studies have also described protein profiles of platelets²⁰ and peripheral mononuclear cells²¹ of patients with MDS. These results indicate that hematological stem cell malignancies are preceded by and/or cause dramatic alterations in the proteome of diverse biological entities, from blood to bone marrow components.

Researchers have remarkably contributed to the understanding of myelodysplastic syndrome pathophysiology^{4,22–24}. Despite this unprecedented effort, the current therapy with hypomethylating agents is not effective for all cases of the disease, especially for high-risk MDS^{22,25} and the identification of molecular markers for MDS progression and response to treatment is crucial for effective therapeutic strategies. Thus, a series of studies were designed to decipher potential molecular signatures of MDS subtypes. First, we evaluated the proteome of bone marrow plasma from patients diagnosed a with low-risk (MDS-RS) and a high-risk myelodysplastic syndrome (MDS-EB). As centrosomal protein of 55 kDa (CEP55), moesin (MSN), talin-1 (TLN1) and ubiquitin C (UBC) showed the highest differential abundances in MDS-RS vs. MDS-EB cases, a second phase of the research, was carried out to analyze the expression of those respective genes in mononuclear cells of a distinct cohort of MDS patients.

113 Materials and methods

Research design and ethical statement

The present research consisted of two independent studies (Figure 1). Study 1 evaluated the proteomes of bone marrow plasma from patients (n = 28) with a low-risk (MDS-RS) and a high-risk MDS prototype (MDS-EB). As CEP55, MSN, TLN1 and UBC proteins had the highest differential abundances in MDS-RS vs. MDS-EB cases, Study 2 was conducted to examine the expression of those genes in bone marrow mononuclear cells from an additional cohort of MDS patients (n=45).

122 The project was approved by the Ethics Committee of the Federal University of Ceará – 123 UFC (#69320817.7.0000.5054), with written consent from each participant. Diagnosis of the 124 disease followed WHO 2016 guidelines¹ and MDS risk stratification, the Revised International 125 Prognostic Scoring System (IPSS-R)⁵. Patients were diagnosed with MDS at the Drug Research 126 and Development Center, School of Medicine, UFC, and correspond to treatment-naive 127 patients.

129 Cytogenetics

G-banding karyotype of patients from Study 1 and Study 2 (see below) was performed
as previously reported²⁶. Briefly, cultures were established in RPMI 1640 medium (Gibco,
USA) containing 30% fetal calf serum. For the 24 h culture, colcemid was added at a 0.05
µg/mL concentration for the final 30 min. of culture. After harvesting, cells were exposed to a
hypotonic KCl solution (0.068 mol/L) and fixed with Carnoy buffer (1:3 acetic acid/methanol).
Slides were stained with Giemsa solution and 20 metaphases were analyzed whenever possible.
The karyotype was prepared using CytoVision Automated Karyotyping System (Applied

Imaging, USA) and described according to the International System for Human Cytogenetic
Nomenclature 2016²⁷.

140 Study 1. Quantitative proteomic analysis of bone marrow plasma

The proteome of bone marrow (BM) plasma was evaluated in samples from 13 patients diagnosed with MDS-RS and 15 patients with MDS-EB, which included subcategories MDS-EB-1 (5-9% blasts in the bone marrow) and MDS-EB-2 (10-19% blasts in the bone marrow) (Table 1).

Bone marrow samples were obtained by sternal aspiration at the same time as trephine biopsy, at diagnosis. After collection, BM was treated with protease inhibitors (Sigma-Aldrich, USA), centrifuged twice (700 × g, 15 min.; 10,000 × g, 30 min.; 4°C) and stored at -80°C. An aliquot of plasma was used for protein quantification²⁸. BM plasma proteins (25 µg) were dissolved in buffer (8 M urea, 0.02 M TEAB, 0.5 M dithiothreitol), followed by incubation at 55°C (400 rpm agitation, 25 min). Then, iodoacetamide was added (0.014 M) and the mixture was maintained at 21°C in the dark (400 rpm, 40 min). Next, buffer (0.005 M dithiothreitol, 0.001 M CaCl₂ and 0.02 M TEAB) was added to reach 75µl volume. Samples were incubated with trypsin (Promega, USA) at 37°C for 18 h and trifluoroacetic acid (1%) was added to stop tryptic activity. Then, stage tip C18 columns were made using Empore TM SPE disks for peptide desalting (Sigma-Aldrich, Germany), as reported before^{29,30}. Digested samples were added to the columns, washed and eluted with acetonitrile (0.5%; 25% to 80%) and 0.5% acetic acid. Peptides were quantified prior to mass spectrometry (QubitTM; Thermo Fisher, USA).

159 Label-free mass spectrometry

Peptides (3 μg) were applied to a Dionex Ultimate 3,000 liquid chromatographer
 (Thermo Scientific, USA) for reversed phase nano-chromatography²⁹. Peptides were injected

> into a 2 cm x 100 μ m trap-column (C18, 5- μ m particles), eluted to another analytical column (32 cm x 75 μ m; C18, 3- μ m particles; Dr. Maisch GmbH, Germany) and to the spectrometer's ionization source. Elution gradient contained formic acid and acetonitrile²⁹. Samples were analyzed in positive data dependent acquisition mode (Orbitrap Elite; Thermo Fisher, USA)^{29,31} and eluted fractions generated MS1 spectra (300 – 1,650 m/z, 120,000 FWHM resolution, 400 m/z). The 20 most abundant ions from MS1 with at leas two charges were selected to fragmentation (MS2) by higher-energy collisional dissociation (HCD) with an automatic gain control of 1 x 10⁶ and dynamic exclusion of 10 ppm for 90 s. HCD isolation window was set for 2.0 m/z, with 5 x 10⁴ AGC, normalized collision energy of 35% and threshold for fragmentation of 3,000.

173 Data analyses

MS1 spectra were quantified according to integrated intensity area from XIC peaks. Proteins were identified using Peaks software, with sequences from the fragmentation information and UniProt database, and protein abundances were determined with Progenesis QI (Nonlinear Dynamics; Waters, USA)²⁹. A first statistical analysis (ANOVA, p < 0.05) was performed before protein identification to filter MS1 features. Peaks software used fragmentation spectra and *Homo sapiens* Uniprot database, considering <1% false discovery rate and >1 unique peptide per protein, in addition to other settings²⁹. Proteins with different abundances (p < 0.05) in MDS-RS vs. MDS-EB were subjected to multivariate analysis using MetaboAnalyst 4.0 (http://www.metaboanalyst.ca)^{29,32,33}, setting log transformation, sample median normalization and mean centered. Partial-Least Squares Discriminant Analysis (PLS-DA) with Variable Importance in Projection (VIP) verified data patterns in the MDS-RS vs. MDS-EB scenario.

187 Study 2. Gene expressions in bone marrow mononuclear cells

Gene expression validation of *CEP55*, *MSN*, *TLN1* and *UBC* was carried out by qPCR in bone marrow mononuclear cells from 45 MDS patients, including 15 MDS-RS and 23 MDS-EB patients, five with multilineage dysplasia, one with single lineage dysplasia and one with MDS secondary to therapy (Table 2). Four MDS-RS and three MDS-EB patients listed in Study 1 were included in Study 2.

Bone marrow was obtained as described for Study 1. Mononuclear cells were separated after lysis of red blood cells and subjected to total RNA extraction (TRizol ReagentTM; Invitrogen, USA), followed by RNA quantification (Nanodrop 2000c; Thermo Scientific, USA). cDNA was obtained with High-Capacity cDNA Reverse Transcription kits and gene expression, carried out using TaqMan Gene Expression Assays as follows: CEP55 (Hs01070181 m1), MSN (Hs00792607 mH), TLN1 (Hs00196775 m1), UBC(Hs00824723 m1), beta-2-microglobulin (B2M, Hs99999907 m1; reference gene). Real time PCR reactions were performed usgin 1x TaqMan[®] Universal Master Mix II, with UNG[®] and 7500 Fast System[®] (Applied Biosystems, USA). Samples were analyzed in duplicates and gene expression calculated using $2^{-\Delta Cq}$ method³⁷.

204 Statistical analysis

mRNA data distribution was evaluated by Shapiro–Wilk test and Student's t-test or oneway ANOVA with Tukey/Games Howell post hoc test was used when normality was detected.
Variance homogeneity was evaluated by Levene's test and statistical analyses, conducted with
SPSS 21.0 (SPSS Inc., USA) and GraphPad Prism 8 (GraphPad Prism software, USA).

210 In silico miRNA-gene networks

Regulation of *TLN1* and *CEP55* by miRNAs was analyzed using miRNet 2.0
(https://www.mirnet.ca)³⁵, considering human database and bone marrow as the specific tissue.
Functional enrichment of all miRNAs was built, with highlights for main biological functions.

Results

217 Study 1: proteome of bone marrow plasma

As determined by LC-MS/MS, 1,194 proteins were identified in the BM plasma of MDS patients, with 320 and 490 proteins unique to MDS-RS and MDS-EB samples, respectively, and 384 proteins common to both subtypes (Supplementary Table 1). Based on univariate and multivariate statistical analysis, protein patterns of MDS-RS and MDS-EB bone marrow plasma were distinct (Figure 2A), and lactoferrin, coagulation factor V, polyubiquitin-C, immunoglobulin heavy variable 3-66, inositol 1,4,5-trisphosphate receptor, moesin, histone H2B type 1-J, cDNA FLJ56274, kininogen 1 isoform, talin-1 and histone H1.5 made the most significant contributions to characterize the bone marrow plasma of MDS-EB patients. On the other hand, rheumatoid factor RF-IP12, immunoglobulin kappa var. 1-6 IgG H chain and centrosomal protein of 55 kDa defined the major representation of bone marrow plasma from MDS-RS patients (Figure 2B; Table 3). Considering fold-change values, Polyubiquitin-C (UBC), Moesin (MSN) and Talin-1 (TLN1) showed the highest relative abundances in MDS-EB and Centrosomal protein of 55 kDa (CEP55) was the major protein of the bone marrow plasma from MDS-RS patients.

 $\frac{1}{2}$ 232

233 Study 2. Gene expression in mononuclear cells

Expression of *CEP55, MSN* and *UBC* were similar in mononuclear cells from patients with MDS-RS and MDS-EB (p > 0.05). *TLN1* gene expression, however, was greater in with MDS-RS and MDS-EB (p > 0.05).

mononuclear cells of MDS-RS than in mononuclear cells of MDS-EB patients (p = 0.049). Relative quantities of *MSN*, *UBC* and *TLN1* transcripts were similar (p > 0.05) in mononuclear cells of individuals with normal and abnormal karyotypes, irrespective of being MDS subtype. However, *CEP55* gene expression was greater in MDS patients with abnormal karyotypes in comparison with patients with normal karyotypes (p = 0.045; Figure 3; Supplementary Table 2).

243 In silico miRNA-gene interactions

TLN1 expression is potentially regulated by onco-miRNAs and miRNAs associated with
cell cycle, cell death, immune system, angiogenesis and hematopoiesis, among others. *CEP55*,
in turn, appeared regulated by onco-miRNAs and miRNAs linked to bone regeneration, DNA
damage response, cell cycle, Akt pathway, among others (Figure 4; Supplementary Table 3 and
4).

250 Discussion

Myelodysplastic syndromes are clinically heterogeneous and characterized, but limited to, by dysplasia of myeloid cell lines, peripheral blood cytopenia, bone marrow insufficiency, disrupted hematopoiesis and anemia^{1,2–4}. Molecular determinants of MDS pathobiology are complex as well and involve altered genomic and epigenetic factors, protein systhesis and structure, intracellular signaling and mechanisms of cell communication, among many other aspects that determine cell life and fate. Given this scenario, our current studies were designed to advance our knowledge about the molecular landscape of MDS.

Considering the scenario with 1,194 proteins identified in the bone marrow plasma,
univariate and multivariate statistical approaches grouped 15 proteins that most defined MDSRS and MDS-EB subtypes. Among this select group, TLN1, MSN and UBC had the greatest

relative abundances in the bone marrow plasma of MDS-EB and CEP55, in MDS-RS patients. Proteomics data gathered in Study 1 and the well-known bio tasks of CEP55, MSN, UBC and TLN1 prompted us to investigate the expression of these genes in mononuclear cells obtained from a cohort of 45 patients. In this case, TLNI was overexpressed in mononuclear cells from MDS-RS when compared to MDS-EB patients. TLN1 is a ubiquitous protein made of alpha-helices and post-translational modification sites (https://alphafold.ebi.ac.uk/entry/O9Y490), with actin and integrin binding domains, affecting signaling pathways^{36–38}. TLN1 acts in mechanotransduction and filopodia function^{39,40} and talin dysregulation results in pathological phenotypes with changed cell spreading, migration and survival^{41,42}. At the molecular level, talin is associated with proliferation and migration pathways, confers anoikis resistance and metastasis^{42,43}, is a key player in hematologic disorders³⁹ and helps platelet and neutrophil activation⁴⁴. Talin-integrin interactions affect migration of platelets and neutrophils^{44,45}, leukocyte and platelet function⁴⁶ and endothelial cell function, as *TLN1* knockout mouse embryos have defective angiogenesis⁴⁷. Given MDS characteristic neutropenia and low platelet count and that sepsis is a common cause of death among MDS patients, we believe TLN1's role in stem cell differentiation and dysplasia must be evaluated in future studies.

The reason why, in our current research, TLN1 was more abundant in MDS-EB bone marrow plasma and TLN1 expression was prevalent in mononuclear cells of MDS-RS patients is not clearly understood. Bone marrow plasma obviously contains molecules originated from blood and it may not entirely reflect what comes from mononuclear cells. Also, mRNA and protein quantities in a given biological entity can be unrelated⁴⁸⁻⁵¹ and cell lysis and/or apoptosis may have occurred during collection and separation of BM plasma samples. Another possible explanation is that MDS-RS cases present serious problems related to splice machinery (mutation of SF3B1), leading to disrupted mRNA translation. This may have led to increased mRNA level without proportional changes in protein synthesis. In this regard, comparisons

between protein abundances in BM plasma and transcript amounts in mononuclear cells are not straightforward because two levels of molecular information were actually generated in our studies, i.e., proteomics of bone marrow plasma and transcript quantification in mononuclear cells. Thus, these two technical approaches provide complementary and not conflicting information. High TLN1 abundance in the BM plasma of patients with MDS-EB may relate to TLN1-mediated activation of FAK/AKT signaling and anoikis resistance⁵². Low *TLN1* gene expression specifically detected in mononuclear cells of MDS-EB patients could be the result of impaired talin/integrin complex.

Onco-miRNAs and miRNAs linked to cell cycle control, immune system, angiogenesis and hematopoiesis regulate TLN1 expression, indicates our in silico assays. Interestingly, nine of these miRNAs have been cited by a recent publication as having differential expressions in cases of MDS⁵³. Given its functional properties, TLN1 has been listed as a potential drug for targeted therapy⁵⁴. However, more investigation is needed to decipher the precise roles of TLN1 in MDS pathobiology and how drugs would tackle protein action and/or *TLN1* gene expression. Also defined in study 1, CEP55 was more abundant in the bone marrow plasma of MDS-RS, a distinct entity with mutations in genes related to splicing machinery. Remarkably, we observed in Study 2 that increased CEP55 expression in mononuclear cells was linked to chromosomal abnormality in the MDS patients, regardless of MDS subtypes. CEP55 is an alpha helical protein (https://alphafold.ebi.ac.uk/entry/Q53EZ4) with domains involved in abscission, midbody localization and a ubiquitin-binding domain required for cytokinesis^{55–57}. CEP55 helps to define an uploid cells during perturbed mitosis⁵⁸ and high CEP55 expression facilitates exit from mitotic arrest, resulting in resistance to anti-mitotic drugs in murine models. CEP55-depleted organisms have increased proportion of multinucleated cells and/or cells arrested at the midbody stage⁵⁹ and, additionally, CPE55 modulates PI3K/AKT pathway⁶⁰. In fact, based on *in silico* models (https://string-db.org/; data not shown), CEP55 interacts with a diverse array

of proteins, including components of the ESCRT-I complex, a regulator of vesicular transport, cell growth and differentiation, a microtubule-associated protein, a regulator of Rac GTPase activity and cell cycle during carcinogenesis, cyclin-dependent kinases and a DNA topoisomerase. This entire scenario reflects, thus, the multidimensional attributes of CEP55. As we have shown for the case of *TLN1, in silico* analysis shows *CEP55* being regulated by oncogenes and miRNAs linked to DNA damage response, cell cycle and AKT pathway. The expression of several genes that define normal blood cells are regulated by miRNAs and MDS prognosis has been linked to specific miRNAs of the bone marrow, peripheral blood and mononuclear cells⁵³. In fact, some *CEP55*-controling miRNAs identified in our *in silico* model are listed by the literature as differentially expressed in patients with MDS⁶¹⁻⁶⁴.

Chromosomal abnormalities are common alteration observed in up to 50% of MDS cases, mostly due to problems during spindle assembly checkpoint (SAC), which controls mitotic progression and proper chromosome alignment and segregation. SAC delays anaphase until accurate kinetochore-microtubule attachment of each chromosome and inhibition of SAC prolongs mitotic arrest. The majority of antimitotic chemotherapies act by altering microtubule dynamics, but cancer cells are able to bypass mitotic arrest and prematurely exit mitosis, a phenomenon reported as mitotic slippage. High CEP55 expression is a marker of chromosomal alterations, aneuploidy in many types of tumor and poor prognosis of cancer patients^{58,65,66}. Overexpression of CEP55 promotes tumorigenesis, causing chromosomal instability and aberrant mitotic division in a transgenic mouse model⁶⁷. Also, transgenic mice with upregulated CEP55 have disrupted self-renewal and mitosis of spermatogonial cells in such a way that animals present a Sertoli-cell only syndrome phenotype⁶⁸. These results support CEP55 roles in cell differentiation and cell cycle homeostasis. Chromosomal and/or genomic instability is a hallmark of cancer that leads to numerical and structural alterations in karyotypes and tumor development⁶⁹. Cytogenetic abnormalities are the main characteristic of MDS diagnosis and

prognosis, predicting clinical evolution and transformation to AML^{70,71}. Given CEP55 well-established role in cytokinesis and maintenance of aneuploidy cells, greater CEP55 expression in patients with chromosomal alterations may relate to cytopenia, dysplasia and aberrant myeloid differentiation. CEP55 dictates the process of mitotic slippage in cancer, a process in which cancer cells exit mitosis without proper chromosome segregation, leading to chromosomal abnormalities. Considering that incidence of chromosomal abnormalities is 50% in primary MDS and up to 80% in secondary MDS, our present results are indeed exciting as CEP55 may become a target for treatment of cancer cells with cytogenetic abnormalities⁷². In conclusion, proteomic and transcriptomic approaches provided new pieces of information about molecular signatures of myelodysplastic syndromes. We recognize that our study did not evaluate other MDS subtypes such as MDS with multilineage dysplasia, MDS secondary to therapy and hypoplastic MDS. However, this is the first report of altered TLN1 and CEP55 expressions in cellular and noncellular compartments of bone marrow from patients

with low and high-risk MDS and with normal vs. abnormal karyotypes. We suggest that TLN1and CEP55 could become important molecular markers for MDS prognosis and/or targeted therapy.

Acknowledgements

The authors appreciate the support from the members of the Experimental Oncology Laboratory, specially to Silvana França, from the Center for Research and Drug Development (NPDM) of the Federal University of Ceará, and from the Laboratory of Protein Chemistry and Biochemistry, at the University of Brasília.

Financial support

The present study was funded by the Ceará State Foundation for the Support of Scientific Development (FUNCAP) and The Brazilian Council for Science and Technology Development - CNPq (grant # PR2-0101-00049.01.00/15). Additional support was provided by CNPq to Cristiana L. M. Furtado (grant # 437037/2018-5), Claudia Pessoa (grants # 440755/2018-2, 434821/2018-7 and 303102/2013-6) and Arlindo A. Moura (grant # 313160/2017-1). Authors also appreciate the support of FUNCAP, CNPq and The Brazilian Commission for Higher Education (CAPES) for graduate student and post-doctoral scholarships.

2 3 4	369 References								
5	370								
7	371	1.	Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health						
8 9	372		Organization classification of lymphoid neoplasms. <i>Blood</i> . 2016;127(20):2375-2390.						
10 11	373		doi:10.1182/blood-2016-01-643569						
12	374	2.	Ogawa S. Genetic basis of myelodysplastic syndromes. Proc Japan Acad Ser B Phys						
14	375		Biol Sci. 2020;96(3):107-121. doi:10.2183/PJAB.96.009						
15 16	376	3.	Malcovati L, Ambaglio I, Elena C. The genomic landscape of myeloid neoplasms with						
17 18	377		myelodysplasia and its clinical implications. Curr Opin Oncol. 2015;27(6):551-559.						
19 20	378		doi:10.1097/CCO.00000000000229						
20 21	379	4.	Elias HK, Schinke C, Bhattacharyya S, Will B, Verma A, Steidl U. Stem cell origin of						
22 23	380		myelodysplastic syndromes. Oncogene. 2013;33(44):5139-5150.						
24 25	381		doi:10.1038/onc.2013.520						
26	382	5.	Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring						
27 28	383		system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465.						
29 30	384		doi:10.1182/blood-2012-03-420489						
31 32	385	6.	Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health						
33	386		Organization classification of myeloid neoplasms and acute leukemia. Blood.						
34 35	387		2016;127(20):2391-2405. doi:10.1182/blood-2016-03-643544						
36 37	388	7.	Arber DA. The 2016 WHO classification of acute myeloid leukemia: What the						
38	389		practicing clinician needs to know. Semin Hematol. 2018;56(2):90-95.						
39 40	390		doi:10.1053/j.seminhematol.2018.08.002						
41 42	391	8.	Ali AM, Huang Y, Pinheiro RF, et al. Severely impaired terminal erythroid						
43 44	392		differentiation as an independent prognostic marker in myelodysplastic syndromes.						
45	393		Blood Adv. 2018;2(12):1393-1402. doi:10.1182/bloodadvances.2018018440						
40 47	394	9.	Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361:1872-						
48 49	395		1875. doi:10.1053/j.semdp.2011.08.005						
50 51	396	10.	Vardiman JW. The World Health Organization (WHO) classification of tumors of the						
52	397		hematopoietic and lymphoid tissues: An overview with emphasis on the myeloid						
53 54	398		neoplasms. Chem Biol Interact. 2010;184(1-2):16-20. doi:10.1016/j.cbi.2009.10.009						
55 56	399	11.	Malcovati L, Gallì A, Travaglino E, et al. Clinical significance of somatic mutation in						
57	400		unexplained blood cytopenia. Blood. 2017;129(25):3371-3378. doi:10.1182/blood-						
59 60	401		2017-01-763425						

2			
3 1	402	12.	Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in
5 6 7 8 9 10 11 12 13 14 15 16	403		MDS and MGUS: Implications for AML and MM. Nat Rev Clin Oncol.
	404		2018;15(4):219-233. doi:10.1038/nrclinonc.2017.197
	405	13.	Roboz GJ. Evolving treatments in acute myeloid leukemia. Clin Adv Hematol Oncol.
	406		2015;13(2):93-95.
	407	14.	Çelik H, Lindblad KE, Popescu B, et al. Highly multiplexed proteomic assessment of
	408		human bone marrow in acute myeloid leukemia. Blood Adv. 2020;4(2):367-379.
	409		doi:10.1182/bloodadvances.2019001124
17	410	15.	Braoudaki M, Lambrou GI, Vougas K, Karamolegou K, Tsangaris GT, Tzortzatou-
18 19	411		Stathopoulou F. Protein biomarkers distinguish between high- and low-risk pediatric
20 21	412		acute lymphoblastic leukemia in a tissue specific manner. J Hematol Oncol.
22	413		2013;6(1):1. doi:10.1186/1756-8722-6-52
23 24	414	16.	Nicolas E, Ramus C, Berthier S, et al. Expression of S100A8 in leukemic cells predicts
25 26	415		poor survival in de novo AML patients. Leukemia. 2011;25(1):57-65.
27 28	416		doi:10.1038/leu.2010.251
29	417	17.	Aivado M, Spentzos D, Germing U, et al. Serum proteome profiling detects
30 31	418		myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers
32 33	419		for advanced disease. Proc Natl Acad Sci USA. 2007;104(4):1307-1312.
34 35	420		doi:10.1073/pnas.0610330104
36	421	18.	Májek P, Riedelová-Reicheltová Z, Suttnar J, Pečánková K, Čermák J, Dyr JE. Plasma
37 38	422		proteome changes associated with refractory anemia and refractory anemia with ringed
39 40	423		sideroblasts in patients with myelodysplastic syndrome. <i>Proteome Sci.</i> 2013;11(1):1-9.
41	424		doi:10.1186/1477-5956-11-14
42 43	425	19.	Majek P, Riedelova-Reicheltova Z, Suttnar J, Pecankova K, Cermak J, Dyr JE.
44 45	426		Proteome changes in the plasma of myelodysplastic syndrome patients with refractory
46 47	427		anemia with excess blasts subtype 2. Dis Markers. 2014;2014.
48	428		doi:10.1155/2014/178709
49 50	429	20.	Fröbel J, Cadeddu RP, Hartwig S, et al. Platelet proteome analysis reveals integrin-
51 52	430		dependent aggregation defects in patients with myelodysplastic syndromes. Mol Cell
53	431		Proteomics. 2013;12(5):1272-1280. doi:10.1074/mcp.M112.023168
55	432	21.	Pecankova K, Majek P, Cermak J, Dyr JE. Peripheral blood mononuclear cell proteome
56 57	433		changes in patients with myelodysplastic syndrome. Biomed Res Int. 2015;2015.
58 59	434		doi:10.1155/2015/872983
60	435	22.	Prebet T, Zeidan A. Trends in Clinical Investigation for Myelodysplastic Syndromes.

1			17
2	436		Clin Lymphoma, Myeloma Leuk. 2016;16(August):S57-S63.
4 5	437		doi:10.1016/j.clml.2016.02.012
6 7	438	23.	Kennedy JA, Ebert BL. Clinical implications of Genetic mutations in Myelodysplastic
8	439		syndrome. J Clin Oncol. 2017;35(9):968-974. doi:10.1200/JCO.2016.71.0806
9 10	440	24.	Haferlach T. The Molecular Pathology of Myelodysplastic Syndrome. Pathobiology.
11 12	441		2019;86(1):24-29. doi:10.1159/000488712
13 14	442	25.	Komrokji RS, Padron E, Ebert BL, List AF. Deletion 5q MDS: Molecular and
15 16	443		therapeutic implications. Best Pract Res Clin Haematol. 2013;26(4):365-375.
17	444		doi:10.1016/j.beha.2013.10.013
18 19	445	26.	Pinheiro RF, Chauffaille MLLF. Comparison of I-FISH and G-banding for the
20 21	446		detection of chromosomal abnormalities during the evolution of myelodysplastic
22	447		syndrome. Brazilian J Med Biol Res. 2009;42(11):1110-1112. doi:10.1590/S0100-
23 24 25	448		879X2009001100018
25 26	449	27.	McGowan-Jordan J, Simons A, Schimd M. Cytogenetic and Genome Research. In:
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	450		ISCN 2016 An International System for Human Cytogenomic Nomeclature (2016). Vol
	451		151. ; 2017:61-114.
	452	28.	Bradford MM. A Rapid and Sensitive Method for the Quantitation of Microgram
	453		Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem.
34 35	454		1976;572:248-254. doi:10.1016/j.cj.2017.04.003
36	455	29.	Viana AGA, Martins AMA, Pontes AH, et al. Proteomic landscape of seminal plasma
37 38	456		associated with dairy bull fertility. Sci Rep. 2018;8(1):1-13. doi:10.1038/s41598-018-
39 40	457		34152-w
41 42	458	30.	Arshid S, Tahir M, Fontes B, et al. High performance mass spectrometry based
43	459		proteomics reveals enzyme and signaling pathway regulation in neutrophils during the
44 45	460		early stage of surgical trauma. Proteomics - Clin Appl. 2017;11(1-2):1-34.
46 47	461		doi:10.1002/prca.201600001
48 ⊿9	462	31.	Gomes HAR, Silva AJ da, Gómez-Mendoza DP, et al. Identification of multienzymatic
50	463		complexes in the Clonostachys byssicola secretomes produced in response to different
51 52	464		lignocellulosic carbon sources. J Biotechnol. 2017;254(May):51-58.
53 54	465		doi:10.1016/j.jbiotec.2017.06.001
55 56	466	32.	Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: A web server for
50 57	467		metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(SUPPL.
58 59	468		2):652-660. doi:10.1093/nar/gkp356
60	469	33.	Chong J, Soufan O, Li C, et al. MetaboAnalyst 4.0: Towards more transparent and

Page 21 of 35

1			20
2 3	470		integrative metabolomics analysis. <i>Nucleic Acids Res.</i> 2018:46(W1):W486-W494.
4 5	471		doi:10.1093/nar/gkv310
6 7	472	34.	Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
8	473		quantitative PCR and the 2- $\Delta\Delta$ CT method. <i>Methods</i> . 2001;25(4):402-408.
9 10	474		doi:10.1006/meth.2001.1262
11 12	475	35.	Chen W, Gao C, Liu Y, Wen Y, Hong X, Huang Z. Bioinformatics Analysis of
13 14	476		Prognostic miRNA Signature and Potential Critical Genes in Colon Cancer. Front
15	477		Genet. 2020;11(June):1-15. doi:10.3389/fgene.2020.00478
16 17	478	36.	Calderwood DA. Talins and kindlins; partners in integrin-mediated adhesion. <i>Nat Rev</i>
18 19	479		Mol Cell Biol. 2013;14(8):503-517. doi:10.1038/nrm3624.Talins
20 21	480	37.	Das M, Subbayya Ithychanda S, Qin J, Plow EF. Mechanisms of talin-dependent
22	481		integrin signaling and crosstalk. Biochim Biophys Acta - Biomembr. 2014;1838(2):579-
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	482		588. doi:10.1016/j.bbamem.2013.07.017
	483	38.	Goult BT, Yan J, Schwartz MA. Talin as a mechanosensitive signaling hub. J Cell
	484		Biol. 2018;217(11):3776-3784. doi:10.1083/jcb.201808061
	485	39.	Haining AWM, Lieberthal TJ, Del Río Hernández A. Talin: A mechanosensitive
	486		molecule in health and disease. FASEB J. 2016;30(6):2073-2085.
32 33	487		doi:10.1096/fj.201500080R
34 35	488	40.	Miihkinen M, Grönloh MLB, Popović A, et al. Myosin-X and talin modulate integrin
36	489		activity at filopodia tips. Cell Rep. 2021;36(11):109716.
37 38	490		doi:10.1016/j.celrep.2021.109716
39 40	491	41.	Sakamoto S, McCann RO, Dhir R, Kyprianou N. Talin1 Promotes Tumor Invasion and
41 42	492		Metastasis via Focal Adhesion Signaling and Anoikis Resistance. Cancer Res.
43	493		2010;70(5):1885-1895. doi:10.1158/0008-5472.CAN-09-2833.Talin1
44 45	494	42.	Desiniotis A, Kyprianou N. Significance of Talin in Cancer Progression and Metastasis
46 47	495		Andreas. Int Rev Cell Mol Biol. 2011;289:117-147. doi:10.1016/B978-0-12-386039-
48 ⊿q	496		2.00004-3.Significance
50	497	43.	Lee YG, Kim I, Yoon SS, et al. Comparative analysis between azacitidine and
51 52	498		decitabine for the treatment of myelodysplastic syndromes. Br J Haematol.
53 54	499		2013;161(3):339-347. doi:10.1111/bjh.12256
55 56	500	44.	Hailing JR, Monkley SJ, Critchley DR, Petrich BG. Talin-dependent integrin activation
57	501		is required for fibrin clot retraction by platelets. <i>Blood</i> . 2011;117(5):1719-1722.
58 59	502		doi:10.1182/blood-2010-09-305433
60	503	45.	Lefort CT, Rossaint J, Moser M, et al. Distinct roles for talin-1 and kindlin-3 in LFA-1

1			21
2 3	504		extension and affinity regulation. <i>Blood</i> . 2012;119(18):4275-4282. doi:10.1182/blood-
4 5	505		2011-08-373118
6 7	506	46.	Ye F, Petrich BG. Kindlin: Helper, co-activator, or booster of talin in integrin
8	507		activation? Curr Opin Hematol. 2011;18(5):356-360.
9 10	508		doi:10.1097/MOH.0b013e3283497f09
11 12	509	47.	Monkley SJ, Kostourou V, Spence L, et al. Endothelial cell talin1 is essential for
13 14	510		embryonic angiogenesis. Dev Biol. 2011;349(2):494-502.
15	511		doi:10.1016/j.ydbio.2010.11.010
17	512	48.	Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between Protein and mRNA
18 19	513		Abundance in Yeast. Mol Cell Biol. 1999;19(3):1720-1730.
20 21	514		doi:10.1128/mcb.19.3.1720
22	515	49.	Liu L, Mei Q, Zhao J, Dai Y, Fu Q. Suppression of CEP55 reduces cell viability and
23 24	516		induces apoptosis in human lung cancer. Published online 2016:1939-1945.
25 26 27 28 29 30 31 32 33	517		doi:10.3892/or.2016.5059
	518	50.	Fortelny N, Overall CM, Pavlidis P, Freue GVC. Can we predict protein from mRNA
	519		levels? Nature. 2017;547(7664):E19-E20. doi:10.1038/nature22293
	520	51.	Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW. Transcriptome and Proteome
	521		Dynamics of a Light-Dark Synchronized Bacterial Cell Cycle. PLoS One. 2012;7(8).
34 35	522		doi:10.1371/journal.pone.0043432
36	523	52.	Chang LC, Huang CH, Cheng CH, Chen BH, Chen HC. Differential effect of the focal
37 38	524		adhesion kinase Y397F mutant on v-Src-stimulated cell invasion and tumor growth. J
39 40	525		Biomed Sci. 2005;12(4):571-585. doi:10.1007/s11373-005-7212-5
41 42	526	53.	Veryaskina YA, Titov SE, Kovynev IB, Fedorova SS, Pospelova TI, Zhimulev IF.
43	527		MicroRNAs in the Myelodysplastic Syndrome. Acta Naturae. 2021;13(2):4-15.
44 45	528		doi:10.32607/actanaturae.11209
46 47	529	54.	Malla RR, Vempati RK. Talin: A Potential Drug Target for Cancer Therapy. Curr
48 40	530		Drug Metab. 2020;21(1):25-32. doi:10.2174/1389200221666200214114018
49 50	531	55.	Kim HJ, Yoon J, Matsuura A, et al. Structural and biochemical insights into the role of
51 52	532		testis-expressed gene 14 (TEX14) in forming the stable intercellular bridges of germ
53 54	533		cells. Proc Natl Acad Sci USA. 2015;112(40):12372-12377.
55	534		doi:10.1073/pnas.1418606112
57	535	56.	Halidi KNS, Fontan E, Boucharlat A, et al. Two NEMO-like Ubiquitin-Binding
58 59	536		Domains in CEP55 Differently Regulate Cytokinesis. iScience. 2019;20:292-309.
60	537		doi:10.1016/j.isci.2019.08.042

Page 23 of 35

Fabbro M, Zhou BB, Takahashi M, et al. Cdk1/Erk2- and Plk1-dependent 57. phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell. 2005;9(4):477-488. doi:10.1016/j.devcel.2005.09.003 Kalimutho M, Sinha D, Jeffery J, et al. CEP 55 is a determinant of cell fate during 58. perturbed mitosis in breast cancer. EMBO Mol Med. 2018;10:1-22. doi:10.15252/emmm.201708566 59. Zhao W, Seki A, Fang G. Cep55, a Microtubule-bundling Protein, Associates with Centralspindlin to Control the Midbody Integrity and Cell Abscission during Cytokinesis. Mol Biol Cell. 2006;17(September):3881-3896. doi:10.1091/mbc.E06 60. Hemmings BA, Restuccia DF. PI3K-PKB / Akt Pathway. Cold Spring Harb Perspect Med. 2012;4(9):1-4. 61. Pons A, Nomdedeu B, Navarro A, et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 2009;50(11):1854-1859. doi:10.3109/10428190903147645 Liang H wei, Luo B, Du L hua, et al. Expression significance and potential mechanism 62. of hypoxia-inducible factor 1 alpha in patients with myelodysplastic syndromes. Cancer Med. 2019;8(13):6021-6035. doi:10.1002/cam4.2447 M. Dostalova Merkerova A, Hrustincova Z, Krejcik H, Votavova E, Ratajova J, 63. Cermak MB. Microarray profiling defines circulating microRNAs associated with myelodysplastic syndromes. Neoplasma. 2017;64(4):571-578. doi:10.4149/neo 64. Jang SJ, Choi IS, Park G, et al. MicroRNA-205-5p is upregulated in myelodysplastic syndromes and induces cell proliferation via PTEN suppression. Leuk Res. 2016;47:172-177. doi:10.1016/j.leukres.2016.06.003 Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal 65. instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006;38(9):1043-1048. doi:10.1038/ng1861 66. Li F, Jin D, Tang C, Gao D. CEP55 promotes cell proliferation and inhibits apoptosis via the pi3k/akt/p21 signaling pathway in human glioma u251 cells. Oncol Lett. 2018;15(4):4789-4796. doi:10.3892/ol.2018.7934 Sinha D, Nag P, Nanayakkara D, et al. Cep55 overexpression promotes genomic 67. instability and tumorigenesis in mice. Commun Biol. 2020;3(593):1-16. doi:10.1038/s42003-020-01304-6 68. Sinha D, Kalimutho M, Bowles J, et al. Cep55 overexpression causes male-specific

1			23
2 3	572		sterility in mice by suppressing Foxo1 nuclear retention through sustained activation of
4 5	573		PI3K/Akt signaling. FASEB J. 2018;32(9):4984-4999. doi:10.1096/fj.201701096RR
6 7	574	69.	Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell.
8	575		2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
9 10	576	70.	Adès L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet.
11 12	577		2014;383(9936):2239-2252. doi:10.1016/S0140-6736(13)61901-7
13 14	578	71.	Ribeiro CL, Pinto IP, Pereira SSS, et al. Genomic variations in patients with
15 16	579		myelodysplastic syndrome and karyotypes without numerical or structural changes. Sci
17	580		Rep. 2021;11(1):1-11. doi:10.1038/s41598-021-81467-2
18 19	581	72.	Sinha D, Duijf PHG, Khanna KK. Mitotic slippage: an old tale with a new twist. Cell
20 21	582		<i>Cycle</i> . 2019;18(1):7-15. doi:10.1080/15384101.2018.1559557
22 23	583		
24 25			
25 26			
27 28			
29 30			
31 32			
33			
34 35			
36 37			
38 39			
40			
41 42			
43 44			
45 46			
47			
40 49			
50 51			
52 53			
54 55			
56			
57 58			
59 60			

Figure 1. Overall design and main results of the research about the proteomic analysis of bone marrow plasma and gene expression in mononuclear cells from patients diagnosed with myelodysplastic syndromes (MDS). The main template of the figure was created using Biorender platform (<u>https://biorender.com/</u>). MDS-RS: myelodysplastic syndrome with ring sideroblasts; MDS-EB: myelodysplastic syndrome with excess blasts.

For Review Only

Table 1. Summary of clinical and progr	nostic characteristics of patients	with myelodysplastic sync	drome (MDS) with ring	sideroblasts (MDS-RS)
and MDS with excess blasts (MDS-EB)).			

Case	Gender	Age	Hb (g/dL)	ANC (/mm ³)	Platelets (/mm ³)	Blasts (%)	Karyotype	WHO 2016	IPSS-R
1	М	76	9	1.70	184.00	0	45,XY[18]/46.XY[7]	MDS-RS	Very Low
2	F	72	4.4	1.339	101.00	1	No metaphase	MDS-RS	-
3	М	85	6.7	2.209	171.00	1	46,XY[15]	MDS-RS	Low
4	F	66	6.5	2.293	262.00	4	No metaphase	MDS-RS	-
5	F	75	8.7	3.391	382.00	1	46,XX[15]	MDS-RS	Low
6	М	60	6.12	3.643	51.83	2	No metaphase	MDS-RS	-
7	F	73	7.5	3.844	47.210		No metaphase	MDS-RS	-
8	F	82	5.87	2.180	267.00	2	46,XX[5]	MDS-RS	Low
9	F	70	8.07	2.294	499.00	0	No metaphase	MDS-RS	-
10	F	73	9.76	5.106	676.00	0	46,XX[12]	MDS-RS	Low
11	М	82	7.63	3.599	338.00	0	46,XX[20]	MDS-RS	Low
12	М	85	7.5	2.726	334.10	0.5	No metaphase	MDS-RS	-
13	F	87	10.9	2.728	292.00	1	No metaphase	MDS-RS	-
14	F	60	9.2	217	116.00	5	No metaphase	MDS-EB	-
15	М	59	7.7	222	31.50	5	No metaphase	MDS-EB	-
16	F	75	11	1.548	124.00	5	No metaphase	MDS-EB	-
17	М	72	7.2	813	47.00	5	No metaphase	MDS-EB	-
18	М	84	9.1	344	33.00	18	No metaphase	MDS-EB	-
19	М	58	7.2	275	22.00	18	47,XY,+8[6]/47,XY,del(7)(q32),+8[7]/46,XY[2]	MDS-EB	Very High
20	М	63	7.5	169	51.00	9	46,XY[4]	MDS-EB	High
21	М	79	7.2	1.045	87.00	19	No metaphase	MDS-EB	-
22	F	57	6	1,028	460.00	5	46,XX[10]	MDS-EB	High
23	F	86	6.7	1,280	148.00	19	46,XX[8]	MDS-EB	High
24	М	73	7.1	460	26.00	12	No metaphase	MDS-EB	-
25	М	80	11	938	128.00	8	47,XY,+8[12]/46,XY[8]	MDS-EB	Intermediat
26	М	68	5.61	289	24.00	17	46,XY[5]	MDS-EB	Very High
27	F	44	6.76	1,887	9.98	15	46,XX[20]	MDS-EB	Very High

28 M	74 12.7	843 98.0	00 10	46,XY,del(17)(p11.2)[3]/47,XY,+mar[3]/47,XY,+20[4]/46,XY,del(17)(p11.2) ,+mar[2]/46,XY[9]	MDS-EB High
Abbreviation	s: ANC. Absolu	t Neutrophil Count; l	. Female; Hb. H	Iemoglobin; IPSS-R. Revised International Prognostic Score System; M. Male.	

Case	Gender	Age	Hb (g/dL)	ANC (/mm³)	Platelets (/mm ³)	Karyotype	WHO 2016	IPSS-R
1	F	70	8.07	2294	449000	NO METAPHASE	MDS-RS	-
2	М	62	7.20	275	17000	47,XY,+8[6]/47,XY,del(7)(q32),+8[7]/46,XY[2]	MDS-EB	HIGH
3	М	82	7.63	3599	338000	46,XX[20]	MDS-RS	LOW
4	М	68	5.61	289	24000	NO METAPHASE	MDS-EB	-
5	F	82	5.87	2180	267000	46,XX[5]	MDS-RS	VERY LOW
6	М	74	8.60	3981	177600	46,XY[6]	MDS-RS	LOW
7	F	44	6.76	1887	9982	46,XX[20]	MDS-EB	HIGH
8	М	73	7.10	460	26000	NO METAPHASE	MDS-EB	-
9	F	76	8.70	3391	382000	46,XX[15]	MDS-RS	LOW
10	М	89	7.10	1600	104000	46,XY,t[5;19)(q13.2;q13.4)[3]/46,XY,t[5;19)(q13.2;q13.4),t(8,21)(q21.3;q22.12)[3]/46,XY,d el(X)(q21),t(5;19)(q13.2;q13.4),t(8;21)(q21.3;q22.12)[5]/46,XY[9]	MDS-EB	VERY HIGH
11	М	58	7.80	2300	362000	46, XY, del(5)(q32)[3]/46, XY, del(5)(q32), del(7)(q36)[3]/46, XY, -5, +mar[9]/46, XY[7]	MDS-EB	HIGH
12	М	55	4.60	496	81000	45,XY,-7[15]/46,XY,-7,+mar[5]	MDS-EB	HIGH
13	F	42	10.50	2072	25000	46,XX[20]	MDS-EB	HIGH
14	М	84	3.90	2940	68000	46,XY[20]	MDS-EB	HIGH
15	F	79	9.90	1296	30000	46,XX[12]	MDS-EB	HIGH
16	М	75	8.30	957	21000	92, XXYY[4]	MDS-EB	HIGH
17	М	55	6.10	4460	40000	45,X,-Y[15]/45,X,-Y,del(5)(q32)[3]/46,XY[2]	MDS-EB	HIGH
18	F	81	11.90	744	57000	46,XY[4]	MDS-EB	HIGH
19	F	93	9.50	860	47000	46,XX,+8[12]/46,XX[8]	MDS-EB	HIGH
20	F	80	8.80	5461	21000	46,XX[20]	MDS-RS	LOW
21	F	77	12.00	1099	143000	46,XX[20]	MDS-EB	HIGH
22	F	82	6.90	1585	193000	47,XX,+8[9]/47,XX,+8,del(20)(q12)[5]/46,XX[6]	MDS-RS	INTERMEDIATE
23	М	79	9.90	7400	169000	46,XY[20]	MDS-EB	INTERMEDIATE
24	F	42	10.80	2079	147000	NO METAPHASE	MDS-RS	-
25	М	91	7.70	4753	203000	46,X-Y[4]/46,XY[16]	MDS-RS	LOW
26	М	58	8.50	494	300000	46,XY,del(5)(?q15q33)[8]/46,XY[12]	MDS-RS	LOW
27	М	79	6.70	4752	16000	NO METAPHASE	MDS-EB	-

 Table 2. Summary of clinical and prognostic characteristics of patients with myelodysplastic syndrome (MDS).

20	F	72	6 50	2610	18040	NO METADUASE	MDS ED	
28	F F	12	0.50	3019	18040	NO METAPHASE	MDS-EB	-
29	F	83	9.60	1870	82000	46,XX[20]	MDS-EB	HIG
30	F	59	9.60	3080	326000	46,XX[10]	MDS-RS	LO
31	М	60	6.12	3643	51830	47,XY,+15[10]/46,XY[10]	MDS-RS	LO
32	F	44	6.76	1887	9982	46,XX[20]	MDS-EB	HIG
33	F	46	4.80	2767	556100	46,XX[20]	MDS-MLD	LO
34	F	70	6.80	1357	23000	48,XX,del(9)(q22),r(10)(p15q26.3),+16,+18[15]/46,XX[5]	t-MDS	HIG
35	F	56	5.2	864	28000	46,XX[20]	MDS-EB	HIG
36	М	52	7.0	3203	6000	46,XY,del(7)(q31)[3]/45,XY,- 5,del(7)(q31)[5]/46,XY,del(5)(q15),del(7)(q31)[8]46,XY,del(7)(q31),add(11)(q24)[4]/46,XY, del(5)(q15),del(7)(q31),add(11)(q24)/46,XY[5]	MDS-EB	HIG
37	F	76	9.30	4120	234000	46,XX[20]	MDS-RS	HIG
38	F	64	10.90	1232	20700	46 XX [10]	MDS-MLD	LO
39	Μ	70	10.20	947	117400	46,XY[20]	MDS-RS	LO
40	F	48	11.60	751	57000	46,XX[4]	MDS-SLD	LO
41	F	76	9.90	308	90590	47,XX,+22[4]/46,XX[16]	MDS-MLD	LO
42	М	44	15.80	852	218000	46,XY,del(5)(q15q33), del(17)(p11.2)[7]/46,XY[13]	MDS-MLD	LO
43	F	47	8.60	2920	30000	47,XX,+6[3]/46,XX[17]	MDS-MLD	LO
44	М	71	5.10	813	202000	46,XY[20]	MDS-EB	HIG
15	М	92	9.20	2204	182400	46 XY del(5)(a15a33)[7]/46 XY[13]	MDS-RS	IO

Abbreviations: ANC. Absolut Neutrophil Count; F. Female; Hb. Hemoglobin; IPSS-R. Revised International Prognostic Score System; M. Male; MDS-EB. MDS with excess blasts (n = 23); MDS-MLD. MDS with multilineage dysplasia (n = 5); MDS-SLD. MDS with single lineage dysplasia (n = 1); t-MDS: MDS secondary to therapy (n = 1); MDS-RS. MDS with ring sideroblasts (n = 15).

Figure 2. (A) Partial least square discriminant analysis (PLS-DA) of protein abundances in the bone marrow plasma of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS) and with excess blasts (MDS-EB). Explained variances of components are shown in brackets. (B) Variable Importance in Projection (VIP) scores associated with bone marrow plasma proteins, as identified by PLS-DA. Colored boxes on the right indicate the relative abundances of proteins in each MDS subtype.

to Review Only

VIP scores

Table 3. Proteins of the bone marrow plasma with the highest VIP scores and differentially expressed in patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS) and patients diagnosed with myelodysplastic syndrome with excess blasts (MDS-EB). Proteins were identified by label-free mass spectrometry and data, analyzed by Progenesis QI software and UniProt database.

Accession number	Protein description	Higher abundance in:	Max. fold change	Confidence score*	Anova (p)
Q53EZ4	Centrosomal protein of 55 kDa GN=CEP55	MDS-RS	Infinity	24.72	0.003314
P26038	Moesin GN=MSN	MDS-EB	2713.22	71.69	0.000174
F5GZ39	Polyubiquitin-C (Fragment) GN=UB	MDS-EB	2219.84	46.85	0.004344
Q9Y490	Talin-1 GN=TLN	MDS-EB	294.77	268.42	0.022615
P06899	Histone H2B type 1-J GN=HIST1H2B	MDS-EB	138.86	47.59	0.013181
P16401	Histone H1.5 GN=HIST1H1B	MDS-EB	135.53	90.01	0.009784
P12259	Coagulation factor V GN=F	MDS-EB	104.46	25.06	0.020701
W8QEY1	Lactoferrin GN=FTF	MDS-EB	68.65	59.03	0.002933
B4E022	cDNA FLJ56274. highly similar to	MDS-EB	68.38	203.17	0.001416
	Transketolase (EC 2.2.1.1)				
Q59ES2	Inositol 1,4,5-trisphosphate receptor type 3 variant (Fragment)	MDS-EB	56,65	30,24	0,008421
A2J1M8	Rheumatoid factor RF-IP12 (Fragment)	MDS-RS	25.93	40.95	4.88E-08
S6AWF0	IgG H chain	MDS-RS	12.07	52.97	1.94E-06
B4E1C2	Kininogen 1. isoform CRA_b OS=Homo sapiens GN=KNG1 PE=2 SV=1	MDS-EB	11.23	32.27	0.009069
A0A0C4D	Immunoglobulin kappa variable 1-6	MDS-EB	5.89	31.18	0.001043
H72	GN=IGKV1-6				
A0A0C4D H42	Immunoglobulin heavy variable 3-66 GN=IGHV3-66	MDS-EB	2.57	27.42	0.021628

Figure 3. Quantitative data of *TLN1* and *CEP55* expression $(2^{-\Delta Cq})$ based on qPCR analysis of total RNA extracted from bone marrow mononuclear cells of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS) and with excess blasts (MDS-EB) and patients with normal and abnormal karyotypes, as listed in Table 2.

Figure 4. Network and gene set enrichment analysis of miRNAs associated with the regulation of human *TLN1* and *CEP55* based on the highest p-value obtained from miRNet database (https://www.mirnet.ca).

