MassIVE MSV000086183

Complete Public PXD021598

Regulation of PP2A-subfamily holoenzyme function by carboxyl-terminal methylation

Description

The family of Phosphoprotein Phosphatases (PPPs) is responsible for most cellular serine and threonine dephosphorylation. PPPs achieve substrate specificity and selectivity by forming multimeric holoenzymes with catalytic, scaffolding, and regulatory subunits. Although there are only ten catalytic PPP subunits encoded in the human genome, the formation of holoenzymes creates hundreds of unique enzymes that oppose kinases and carry out specific dephosphorylation reactions. Thus, to achieve the correct cellular phosphorylation state, the assembly of PPP holoenzymes needs to be tightly controlled. Indeed, changes in the cellular repertoire of PPPs are frequently linked to human disease, including cancer and neurodegeneration. The Protein Phosphatase 2A (PP2A) subfamily of PPPs consists of PP2A, PP4, PP6, and holoenzyme formation is at least in part regulated by carboxyl (C)-terminal methyl-esterification (often referred to as methylation) of the catalytic subunits. This reversible modification is catalyzed by a Leucine Carboxyl Methyltransferase-1 (LCMT1) that utilizes S-adenosyl-methionine (SAM) as the methyl donor and removed by Protein Phosphatase Methylesterase 1 (PME1). For PP2A, C-terminal methylation controls regulatory subunit selection. Notably, different types of regulatory subunits display differential methylation sensitivity. For PP4 and PP6, the role of C-terminal methylation is less well defined. Here, we use mass spectrometry-based proteomics, methylation-ablating mutations, and genome editing to comprehensively elucidate the role of C-terminal methylation in PP2A, PP4, and PP6 function in multiple cell lines. Using these approaches, we quantitatively determine the effects of reduced C-terminal methylation on PP2A, PP4, and PP6 holoenzyme assembly in an unbiased, isoform-specific manner. [doi:10.25345/C5CX7W] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: PP2A ; methylation ; c-terminal methylation ; phosphoprotein phosphatase ; PPP ; serine dephosphorylation ; threonine dephosphorylation ; holoenzyme ; cancer ; neurodegeneration ; PP4 ; PP6 ; Leucine Carboxyl Methyltransferase-1 ; LCMT1 ; S-adenosyl-methionine ; SAM ; Protein Phosphatase Methylesterase 1 ; PME1

Contact

Principal Investigators:
(in alphabetical order)
Arminja Kettenbach, The Geisel School of Medicine at Dartmouth, United States
Submitting User: madamo
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files Browse Results
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.