MassIVE MSV000090690

Partial Public PXD038087

Comparative proteomic analysis revealing ActJ-regulated proteins in Sinorhizobium meliloti

Description

Acidic soil disturbs the establishment of the efficient rhizobia commonly used as biofertilizer and the plant-rhizobia interactions. To adapt to different environmental conditions, Sinorhizobium meliloti relies on a complex and finely tuned regulatory network. Although parts of this network have been well-elucidated, most S. meliloti transcriptional regulators remain unexplored. We recently reported that deletion of the ActJK two-component system renders an acid-vulnerable phenotype in S. meliloti and demonstrated the system's requirement for full bacteroid development and nodule occupancy. To more fully understand the role of ActJ in acid tolerance, the proteomes of wild type S. meliloti 2011 and the isogenic actJ- mutant strain were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. That analysis demonstrated that proteins related to cell wall, membrane, and envelope biogenesis such as those involved in the synthesis of exopolysaccharides (EPS) were notably enriched in actJ- cells in acid pH. Total EPS quantification supported these findings; revealing that although EPS production was augmented at pH 5.6 in both the actJ- and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found downregulated in the actJ- strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in acid medium but not at neutrality. Irrespective of the extracellular pH, NtrB -a sensory histidine kinase/phosphatase- and DegP1 -a key serine protease mediating protein quality control in diverse Gram-negative bacteria-, are both differentially expressed when ActJ is absent. Unraveling of ActJK-regulated mechanisms will help to understand how this organism deals with the acid stress naturally encountered in soils, infection threads, and symbiosomes. Results presented here identified several ActJ-regulated genes, highlighting key components of the regulatory network associated with the ActJK two-component system in S. meliloti and that system's role in the response of rhizobia to acid stress. [doi:10.25345/C5VH5CP39] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: ActJK ; Sinorhizobium meliloti ; acid stress, proteomics

Contact

Principal Investigators:
(in alphabetical order)
Maria Florencia Del Papa, Instituto de Biotecnologia y Biologia Molecular. Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CONICET., Argentina
Submitting User: carolinavacca

Publications

Albicoro FJ, Vacca C, Cafiero JH, Draghi WO, Martini MC, Goulian M, Lagares A, Del Papa MF.
Comparative Proteomic Analysis Revealing ActJ-Regulated Proteins in Sinorhizobium meliloti.
J Proteome Res. 2023 Jun 2;22(6):1682-1694. Epub 2023 Apr 5.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.