MassIVE MSV000094736

Partial Public PXD052175

Targeting ERAP enhances anti-tumor immunity by disrupting the NKG2A/HLA-E inhibitory checkpoint

Description

Tsao H, Anderson S, Finn KJ, Perera J, Pass LF, Schneider EM, Jiang A, Fetterman R, Chuong CL, Kozuma K, Stickler MM, Creixell M, Klaeger S, Phulphagar KM, Rachimi S, Verzani EK, Olsson N, Dubrot J, Pech MF, Silkworth W, Lane-Reticker SK, Allen PM, Ibrahim K, Knudsen NH, Cheng AY, Long AH, Ebrahimi-Nik H, Kim SY, Du PP, Iracheta-Vellve A, Robitschek EJ, Suermondt JSMT, Davis TGR, Wolfe CH, Atluri T, Olander KE, Rush JS, Sundberg TB, McAllister FE, Abelin JG, Firestone A, Stokoe D, Carr SA, Harding FA, Yates KB, Manguso RT. 2024 New targets that enhance anti-tumor immunity must be identified to improve the efficacy of cancer immunotherapy. Here we show that loss of endoplasmic reticulum aminopeptidase (ERAP) family proteins improves anti-tumor immunity and synergizes with immune checkpoint blockade. Mechanistically, we show that loss of ERAP inactivates the HLA-E/NKG2A checkpoint, which normally restrains tumor killing by both CD8+ T cells and NK cells. The inhibitory activity of HLA-E is dependent on its presentation of a restricted set of invariant epitopes which form the binding surface for the NKG2A/CD94 receptor complex. Using genetic screening, in vivo models, cell-based assays, and immunopeptidomics, we show that loss of ERAP activity prevents the processing of these invariant peptides and alters the presented peptidome of both HLA-E and classical MHC-I. HLA-E neo-peptides presented after ERAP deletion are unable to bind the NKG2A/CD94 receptor, rendering tumor cells highly susceptible to killing by NKG2A+ cytotoxic T and NK cells. Thus, loss of ERAP phenocopies the loss or inhibition of the HLA-E/NKG2A pathway and represents an attractive therapeutic approach to inhibit this critical checkpoint. More broadly, this work identifies ERAP1/2 as druggable intracellular enzymes that could be targeted using small molecules to inactivate a cell-surface inhibitory pathway and represents a novel approach to therapeutic modulation of immune responses. [doi:10.25345/C59P2WH89] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: ERAP ; TMT11 ; immunopeptidomics ; HLA-I

Contact

Principal Investigators:
(in alphabetical order)
Steven A. Carr, Broad Institute of MIT and Harvard, United States
Submitting User: clauser
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.