MassIVE MSV000097229

Partial Public

Uridine Phosphorylase-1 supports metastasis by altering immune and extracellular matrix landscapes

Description

Understanding mechanisms that facilitate early events in metastatic seeding is key to developing therapeutic approaches to reduce metastasis. We have identified uracil as a prominent metastasis-associated metabolite in genetically engineered mouse models of cancer and in patients with metastatic breast cancer. Uracil is generated by the enzyme uridine phosphorylase-1 (UPP1), and we find that neutrophils are a significant source of UPP1 in metastatic cancer. UPP1 increases expression of adhesion molecules on the neutrophil surface, leading to decreased neutrophil motility in the pre-metastatic lung. UPP1-expressing neutrophils suppress T cell proliferation, and the UPP1 product uracil increases fibronectin deposition in the extracellular microenvironment. Consistently, knockout or inhibition of UPP1 in mice with mammary tumours increases T cell numbers and reduces fibronectin content in the lung and decreases the proportion of mice that develop lung metastasis. These data indicate that UPP1 influences neutrophil behaviour and extracellular matrix deposition in the lung and suggest that circulating uracil could be a marker of metastatic disease, and that pharmacological inhibition of UPP1 could be a strategy to reduce metastasis. [doi:10.25345/C5Q81548W] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Fibronectin ; Metastasis ; Neutrophils ; T cells ; Uridine Phosphorylase ; DatasetType:Metabolomics

Contact

Principal Investigators:
(in alphabetical order)
Cassie Clarke, CRUK Scotland Institute, United Kingdom
David Sumpton, CRUK Scotland Insititue, United Kingdom
Jim Norman, CRUK Scotland Institute, United Kingdom
Submitting User: dsumpton
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.