DNA replication stress is the major cause of genomic instability in human cells. The ataxia telangiectasia and Rad3-related kinase (ATR) plays an essential role in the cellular response to replication stress and inhibition of ATR has emerged as therapeutic strategy for the treatment of cancer. However, the ATR-dependent signaling in the cellular response to replication stress has not been systematically investigated. Here, we employ quantitative mass spectrometry-based proteomics to decipher the ATR-dependent phosphorylation events in response to pathological replication stress induced by hydroxyurea. Our data define the substrate spectrum of ATR and identify several novel putative ATR substrates. In addition, we demonstrate that ATR-inhibition fundamentally rewires cellular signaling networks leading to the prominent activation of different pathways including the ATM-driven double strand break repair.
[dataset license: CC0 1.0 Universal (CC0 1.0)]
Keywords: Phosphorytion ; ATR ; Phosphoproteomics
Principal Investigators: (in alphabetical order) |
Petra Beli, Institute of Molecular Biology (IMB), Mainz, Germany, N/A |
Submitting User: | ccms |
Wagner SA, Oehler H, Voigt A, Dalic D, Freiwald A, Serve H, Beli P.
ATR inhibition rewires cellular signaling networks induced by replication stress.
Proteomics. 2016 Feb;16(3):402-16.
Number of Files: | |
Total Size: | |
Spectra: | |
Subscribers: | |
Owner | Reanalyses | |
---|---|---|
Experimental Design | ||
Conditions:
|
||
Biological Replicates:
|
||
Technical Replicates:
|
||
Identification Results | ||
Proteins (Human, Remapped):
|
||
Proteins (Reported):
|
||
Peptides:
|
||
Variant Peptides:
|
||
PSMs:
|
||
Quantification Results | ||
Differential Proteins:
|
||
Quantified Proteins:
|
||
Browse Dataset Files | |
FTP Download Link (click to copy):
|