MassIVE MSV000080711

Imported Reanalysis Dataset Public PXD003111

Silencing of eIF5B Changes Proteostasis by Providing Negative Feedback on MAPK Signaling

Description

Protein translational machinery is an important component of proteostasis network (PN) that maintains cellular proteostasis and regulates aging and other cellular processes. Ample evidence indicates that inhibition of translation initiation factor activities enhances stress resistance and extends life span in model organisms. Eukaryotic translation initiation factor 5B (eIF5B) is responsible for joining of pre-40S subunits with 60S ribosomal subunits to give a 80S-like complex in protein translational initiation and its silencing may disrupt proteostasis and trigger cellular processes associated with stress responses. In the present work, eIF5B was genetically manipulated in 293T cells. The physiological aspects of eIF5B-knockdown cells (eIF5B-KN) were characterized showing that they grew slower, had a lower level of intracellular reactive oxygen species (ROS), an increased resistance to oxidative stress and an enhanced autophagy. Proteomic analysis showed that silencing of eIF5B resulted in up-regulation of 88 proteins and down-regulation of 130 proteins in eIF5B-KN compared to control cells, which involved in diverse cellular processes including metabolism, RNA processing, and protein metabolism, and DNA synthesis. The autonomous downregulation of the MAPK singnaling pathway was identified that led to the prolonged S-phase cell-cycle arrest and contributed to the slow growth of eIF5B-KN cells. Glutamine transporters were found to be downregulated which enhanced formation of autophagy. Furthermore, eIF5B knockdown compromised the integrity of 28S rRNA and 8.5.8S rRNA that can be rescued via restoring the eIF5B expression level. Taken together, these results demonstrated that eIF5B silencing providesd a negative feedback to down regulate the MAPK signaling pathway which reconstitutesd the proteostasis, resulting in a decrease in cell growth and an enhanced resistance to oxidative stress. Our data provide a useful resource to further biological exploration into functions of protein synthesis in regulation of proteostasis and aging and suggest that eIF5B plays a role in aging process. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: protein synthesis ; proteomics ; proteostasis ; eIF5B ; ribosome.

Contact

Principal Investigators:
(in alphabetical order)
Haiteng Deng, School of Life Sciences, Tsinghua University, China, N/A
Submitting User: ccms

Publications

Boggs I, Hine B, Smolenksi G, Hettinga K, Zhang L, Wheeler TT.
Proteomics data in support of the quantification of the changes of bovine milk proteins during mammary gland involution.
Data Brief. Epub 2016 May 13.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.