The dual-specificity tyrosine phosphorylation-regulated kinase DYRK2 has emerged as a key regulator of cellular processes such as proteasome-mediated protein degradation. To gain further insights into its function, we took a chemical biology approach and developed C17, a potent small-molecule DYRK2 inhibitor, through multiple rounds of structure-based optimization guided by a number of co-crystallized structures. C17 displayed an effect on DYRK2 at a single-digit nanomolar IC50 and showed outstanding selectivity for the human kinome containing 467 other human kinases. Using C17 as a chemical probe, we further performed quantitative phosphoproteomic assays and identified several novel DYRK2 targets, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and stromal interaction molecule 1 (STIM1). DYRK2 phosphorylated 4E-BP1 at multiple sites, and the combined treatment of C17 with AKT and MEK inhibitors showed synergistic 4E-BP1 phosphorylation suppression. The phosphorylation of STIM1 by DYRK2 substantially increased the interaction of STIM1 with the ORAI1 channel, and C17 impeded the store-operated calcium entry process. Collectively, these studies further expand our understanding of DYRK2 and provide a valuable tool to further pinpoint its biological function.
[doi:10.25345/C5QZ3T]
[dataset license: CC0 1.0 Universal (CC0 1.0)]
Keywords: DYRK2
|
Principal Investigators: (in alphabetical order) |
Xiaoguang Lei, peking university, china |
| Submitting User: | MaoYiheng |
| Number of Files: | |
| Total Size: | |
| Spectra: | |
| Subscribers: | |
| Owner | Reanalyses | |
|---|---|---|
| Experimental Design | ||
|
Conditions:
|
||
|
Biological Replicates:
|
||
|
Technical Replicates:
|
||
| Identification Results | ||
|
Proteins (Human, Remapped):
|
||
|
Proteins (Reported):
|
||
|
Peptides:
|
||
|
Variant Peptides:
|
||
|
PSMs:
|
||
| Quantification Results | ||
|
Differential Proteins:
|
||
|
Quantified Proteins:
|
||
| Browse Dataset Files | |
|
FTP Download Link (click to copy):
|