MassIVE MSV000089620

Imported Reanalysis Dataset Public PXD023217

Critical Assessment of Metaproteome Investigation (CAMPI): a Multi-Lab Comparison of Established Workflows

Description

Metaproteomics, the study of the collective proteome within a microbial ecosystem, has substantially grown over the past few years. This growth comes from the increased awareness that it can powerfully supplement metagenomics and metatranscriptomics analyses. Although metaproteomics is more challenging than single-species proteomics, its added value has already been demonstrated in various biosystems, such as gut microbiomes or biogas plants. Because of the many challenges, a variety of metaproteomics workflows have been developed, yet it remains unclear what the impact of the choice of workflow is on the obtained results. Therefore, we set out to compare several well-established workflows in the first community-driven, multi-lab comparison in metaproteomics: the critical assessment of metaproteome investigation (CAMPI) study. In this benchmarking study, we evaluated the influence of different workflows on sample preparation, mass spectrometry acquisition, and bioinformatic analysis on two samples: a simplified, lab-assembled human intestinal sample and a complex human fecal sample. We find that the same overall biological meaning can be inferred from the metaproteome data, regardless of the chosen workflow. Indeed, taxonomic and functional annotations were very similar across all sample-specific data sets. Moreover, this outcome was consistent regardless of whether protein groups or peptides, or differences at the spectrum or peptide level were used to infer these annotations. Where differences were observed, those originated primarily from different wet-lab methods rather than from different bioinformatic pipelines. The CAMPI study thus provides a solid foundation for benchmarking metaproteomics workflows, and will therefore be a key reference for future method improvement. [doi:10.25345/C5SX64D9M] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Microbial communities ; Metaproteomics ; Multi-omics

Contact

Principal Investigators:
(in alphabetical order)
Thilo Muth, Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany, N/A
Submitting User: ccms

Publications

Van Den Bossche T, Kunath BJ, Schallert K, Schäpe SS, Abraham PE, Armengaud J, Arntzen MØ, Bassignani A, Benndorf D, Fuchs S, Giannone RJ, Griffin TJ, Hagen LH, Halder R, Henry C, Hettich RL, Heyer R, Jagtap P, Jehmlich N, Jensen M, Juste C, Kleiner M, Langella O, Lehmann T, Leith E, May P, Mesuere B, Miotello G, Peters SL, Pible O, Queiros PT, Reichl U, Renard BY, Schiebenhoefer H, Sczyrba A, Tanca A, Trappe K, Trezzi JP, Uzzau S, Verschaffelt P, von Bergen M, Wilmes P, Wolf M, Martens L, Muth T.
Critical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows.
Nat Commun. 2021 Dec 15;12(1):7305. Epub 2021 Dec 15.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.