MassIVE MSV000082818

Partial Public

Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns

Description

Javasky E, Shamir I, Gandhi S, Egri S, Sandler O, Rothbart SB, Kaplan N, Jaffe JD, Goren A, and Simon I. Genome Research 2018. Mitosis encompasses key molecular changes including chromatin condensation, nuclear envelope breakdown and reduced transcription levels. Immediately after mitosis, the interphase chromatin structure is reestablished and transcription resumes. The reestablishment of the interphase chromatin requires bookmarking, i.e., the retention of at least partial information during mitosis. Yet, while recent studies demonstrate that chromatin accessibility is generally preserved during mitosis and is only locally modulated, the exact details of the bookmarking process and its components are still unclear. To gain a deeper understanding of the mitotic bookmarking process, we merged proteomics, immunofluorescence, and ChIP-seq approaches to study the mitotic and interphase organization in human cells. We focused on key histone modifications, and employed the HeLa-S3 cells as a model system. Generally, we observed a global concordance between the genomic organization of histone modifications in interphase and mitosis, yet the abundance of the two types of modifications we investigated was different. Whereas histone methylation patterns remain highly similar, histone acetylation patterns show a general reduction while maintaining their genomic organization. In line with a recent study demonstrating that minimal transcription is retained during mitosis, we show that RNA polymerase II does not fully disassociate from the genome, but rather maintains its genomic localization at reduced levels. Next, we followed up on previous studies demonstrating that nucleosome depleted regions (NDRs) become occupied by a nucleosome during mitosis. Surprisingly, we observed that the nucleosome introduced into the NDR during mitosis encompasses a distinctive set of histone modifications, differentiating it from the surrounding nucleosomes. We show that the nucleosomes in the vicinity of the NDR appear to both shift into the NDR during mitosis and undergo deacetylation. HDAC inhibition by the small molecule TSA reverts the deacetylation pattern of the shifted nucleosome. Taken together, our results demonstrate that the epigenomic landscape can serve as a major component of the mitotic bookmarking process, and provide evidence for a mitotic deposition and deacetylation of the nucleosomes surrounding the NDR. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: chromatin ; histone modification ; mitosis

Contact

Principal Investigators:
(in alphabetical order)
Jacob D. Jaffe, Broad Institute of MIT and Harvard, United States
Submitting User: clauser
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.