MassIVE MSV000079883

Imported Reanalysis Dataset Public PXD000359

SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers

Description

Abstract: Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multi-stage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. MS data acquisition and analysis: Digested peptides were analyzed by EASY-nLC system (Thermo Fisher Scientific) coupled on line to a LTQ-Orbitrap XL (for the EC morphogenesis and the spreading, and immunoprecipitation studies) or Velos (for the ECM study) (Thermo Fisher Scientific) via a nanoelectrospray ion source (Thermo Fisher Scientific). Chromatographic peptide separation was done in a 15 cm fused silica emitter (Thermo Fisher Scientific) packed in house with reversed-phase Reprosil (Dr. Maisch GmbH) and eluted with a flow of 250 nl/min from 5% to 70% ACN in 0.5% acetic acid, in a 140 min gradient. The full scan MS spectra were acquired with a resolution of 30,000 at m/z 400 in the Orbitrap. The top 5-10 most intense ions were sequentially isolated for fragmentation using CID (for the EC morphogenesis and spreading, and immunoprecipitation studies) or high-energy collision dissociation (for the ECM study), and recorded in the LTQ or Orbitrap, respectively. In the determination of CLEC14A phosphorylation sites, the neutral loss algorithm in the Xcalibur software was enabled for each MS/MS spectrum. Data were acquired with Xcalibur software (Thermo Fisher Scientific). The MS files were processed with the MaxQuant software version 1.2.6.20 and searched with Andromeda search engine against the human UniProt database (release-2012 01, 81,213 entries). To search parent mass and fragment ions, an initial mass deviation of 6 ppm and 0.5 Da (CID) or 20 ppm (HCD), respectively, were required. The minimum peptide length was set to 7 amino acids and strict specificity for trypsin cleavage was required, allowing up to two missed cleavage sites. Carbamidomethylation (Cys) was set as fixed modification, whereas oxidation (Met) and N-acetylation were considered as variable modifications. No labeling or double SILAC labeling was defined accordingly. The false discovery rates (FDRs) at the protein and peptide level were set to 1%. Scores were calculated in MaxQuant as described previously. The reverse and common contaminants hits (in the ECM proteome analysis, KRT1 and KRT9 were additionally included), were removed from MaxQuant output. Only proteins identified with at least one peptide uniquely assigned to the respective sequence were considered for the analysis. For SILAC protein quantification, the re-quantification feature was enabled, and the relative quantification of the peptides against their SILAC-labeled counterparts was performed by MaxQuant. Only unique peptides were used for quantification and we required proteins being quantified with at least two ratio counts. For the immunoprecipitation and ECM analyses, proteins were quantified according to the MaxQuant label-free algorithm; unique and razor (=most likely belonging to the protein group) peptides were used for protein quantification. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: HUVECs ; angiogenesis ; SILAC ; LC-MS/MS

Contact

Principal Investigators:
(in alphabetical order)
None Listed
Submitting User: ccms

Publications

Zanivan S, Maione F, Hein MY, Hernández-Fernaud JR, Ostasiewicz P, Giraudo E, Mann M.
SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers.
Mol. Cell Proteomics. 2013 Dec;12(12):3599-611. Epub 2013 Aug 26.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.