MassIVE MSV000099586

Partial Public PXD069886

Enhanced Identifications and Quantification through Retention Time Down-Sampling in Fast-Cycling diagonal-PASEF Methods

Description

Data-independent acquisition (DIA) mass spectrometry is essential for comprehensive quantification of proteomes, enabling deeper insights into cellular processes and disease mechanisms. On the timsTOF platform, diagonal-PASEF acquisition methods have recently been introduced to directly and continuously cover the observed diagonal shape of the peptide precursor ion distributions. Diagonal-PASEF has already shown great promise and its adaptation as a routine workflow can be further pushed with improved method development as well as enhanced algorithmic solutions. Here, we conducted a systematic and comprehensive optimization of diagonal-PASEF for 17-minute gradients on the timsTOF HT in conjunction to Spectronaut. We demonstrate that Spectronaut fully supports all tested diagonal-PASEF methods independent of the number of slices or overlaps and with minimal user intervention required. We derive an optimized analysis strategy where we coupled diagonal-PASEF acquisitions to retention time down-sampling by summation (RTsum) and thereby exploit the fast-cycling nature of diagonal-PASEF methods. Through the combination of RTsum with diagonal-PASEF, we demonstrate that this strategy yields higher signal-to-noise ratios while retaining the peak shape for analytes of interest ultimately improving overall number of peptide and protein identifications of diagonal-PASEF. Importantly, combining RTsum with diagonal-PASEF improved overall identifications and quantitative precision when compared to dia-PASEF with variable quadrupole isolation widths and across different input amounts for cell line injections. We also tested the performance of diagonal-PASEF in controlled quantitative experiments where diagonal-PASEF outperformed dia-PASEF in the overall number of retained candidates below 1% or 5% error-rate, quantitative precision and identifications on peptide level and protein level. These data indicate that RTsum demonstrates a positive use case of the high sampling rate of diagonal-PASEF and might therefore be a valuable addition to existing analysis pipelines. Collectively, our findings imply that diagonal-PASEF is developing into a competitive alternative to dia-PASEF and that the data analysis options are making fast progress. [doi:10.25345/C57659V12] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: diagnoal-PASEF ; dia-PASEF ; DatasetType:Proteomics

Contact

Principal Investigators:
(in alphabetical order)
Roland Bruderer, Biognosys AG, Switzerland
Submitting User: roland_bruderer

Publications

Christopher R. Below ? Oliver M. Bernhardt ? Stephanie Kaspar-Schönefeld ? Sander Willems ? Edoardo Coronado ? Ino D. Karemaker ? Bettina Streckenbach ? Monika Pepelnjak ? Luca Räss ? Sandra Schär ? Dennis Trede ? Jonathan R. Krieger ? Tejas Gandhi ? Roland Bruderer ? Lukas Reiter.
Enhanced Identifications and Quantification through Retention Time Down-Sampling in Fast-Cycling diagonal-PASEF Methods.
Molecular and Cellular Proteomics, Articles in Press101480December 2025.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.