MassIVE MSV000092970

Partial Public

Single-cell landscape of innate and acquired drug resistance in acute myeloid leukemia

Description

Deep single-cell multi-omic profiling of drug resistance in patients with relapsed or refractory (rr) acute myeloid leukemia (AML) is a promising approach to understand and identify the molecular and cellular determinants of drug resistance. Here, we address this challenge by integrating single-cell ex vivo drug profiling (pharmacoscopy) with both bulk and single-cell resolved DNA, RNA, and protein profiling, as well as clinical annotations across samples of a cohort of 21 rrAML patients. Unsupervised data integration revealed ex vivo response to the Bcl-2 inhibitor venetoclax (VEN) to be significantly reduced in patients treated with the combination of a hypomethylating agent (HMA) and VEN compared to patients pre-exposed to HMA only, while also exposing innate Ven resistance in a subset of VEN-naive patients. Systematic molecular integration retrieved known and novel molecular mechanisms underlying VEN resistance and identified alternative therapeutic strategies in VEN resistant samples, including targeting increased proliferation by PLK inhibitor volasertib. Across data modalities, high CD36 expression on AML blasts was associated with VENres, while CD36-targeted antibody treatment ex vivo revealed striking sensitivity in VEN resistant AML. In summary, we showcase how single-cell multi-omic and functional profiling can facilitate the discovery of drug resistance mechanisms and emergent treatment vulnerabilities. Our dataset represents a comprehensive molecular and functional profiling of rrAML at single-cell resolution, providing a valuable resource for future studies. [doi:10.25345/C57W67G8Z] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: AML, Proteotyping, Multi-omics, Pharmacoscopy

Contact

Principal Investigators:
(in alphabetical order)
Bernd Wollscheid, ETHZ, Switzerland
Submitting User: Sandra
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.