MassIVE MSV000094782

Partial Public

GNPS - Improving bioenergy yield under drought stress from field to lab

Description

Part of the DOE’s strategy to ensure American energy independence is to produce biofuels from dedicated biomass crops. Achieving DOE’s ambitious goal of displacing 30 percent of 2004 gasoline demand with biofuels by 2030 will require major increases in plant productivity. Switchgrass has been championed as a promising bioenergy species, but few tools exist to facilitate its widespread commercial use. A major challenge has been its large, complex genome. As a close relative of agronomic switchgrass (Panicum virgatum) with a diploid genome and seed-to-seed time of 8 weeks, Panicum hallii offers researchers a model system for exploring Panicum genetics, genomics, and adaptation for agronomic improvement. Bacteria living in leaves and roots influence many aspects of plant health, especially rhizobacteria and mycorrhizae are known to impact plant aboveground phenotypes 1,2. To better understand P. halli-microbe ecosystems, we will conduct experiments at our Texas field site, in EcoCells at Desert Research Institute (DRI) and in growth chambers and the Ecopod at LBNL. Ecopods are enclosed environments that allow direct and intensive monitoring and manipulation of replicated plant-soil-microbe-atmosphere interactions over the complete plant life cycle. Specifically, we are interested in plant microbe ecosystem stress response with respect to soil drying. Despite its broad adaptation to marginal, droughty soils 3,4, a persistent issue in producing switchgrass has been the rapid and consistent establishment of strong stands, especially when drought occurs during implantation. The proposed study is aimed at disclosing biotic interactions modulating plant and microbial metabolism under globally relevant environmental conditions and provides an opportunity to benchmark the Ecopods at LBNL. The work (proposal:https://doi.org/10.46936/10.25585/60001211) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231. [doi:10.25345/C5CC0V509] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: rhizosphere ; drought tolerance

Contact

Principal Investigators:
(in alphabetical order)
Esther Singer, Lawrence Berkeley National Laboratory, United States
Submitting User: bpbowen
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


GNPS content goes here (MSV000094782 [task=af37545c949f4bb4b658f405beabdfda])
Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.