MassIVE MSV000090160

Complete Public

Comparative analysis of co-cultured amniotic cell conditioned media with cell-free amniotic fluid

Description

Myofibroblast activation is a cellular response elicited by a variety of physiological or pathological insults whereby cells initiate a coordinated response intended to eradicate the insult and then revert back to a basal state. However, an underlying theme in various disease states is persistent myofibroblast activation that fails to resolve. Based on multiple observations, we hypothesized that the secreted factors harvested from co-culturing amniotic stem cells might mimic the anti-inflammatory state that cell-free amniotic fluid (AF) elicits. We optimized an amnion epithelial and amniotic fluid cell co-culture system, and tested this hypothesis in the context of myofibroblast activation. However, we discovered that co-cultured amniotic cell conditioned media (coACCM) and AF have opposing effects on myofibroblast activation: coACCM activates the epithelial-mesenchymal transition (EMT) and stimulates gene expression patterns associated with myofibroblast activation, while AF does the opposite. Intriguingly, purified extracellular vesicles (EVs) from AF are necessary and sufficient to activate EMT and inflammatory gene expression patterns, while the EV-depleted AF potently represses these responses. In summary, these data indicate that coACCM stimulates myofibroblast activation, while AF represses it. We interpret these findings to suggest that coACCM, AF, and fractionated AF represent unique biologics that elicit differential cellular responses correlated with a wide variety of pathological states, and therefore could have broad utility in the clinic and the lab. [doi:10.25345/C5S756P9R] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Myofibroblast activation, LCMS

Contact

Principal Investigators:
(in alphabetical order)
Sam Fagg, UT-Medical Branch, United States
William Russell, UT-Medical Branch, United States
Submitting User: Bill
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files Browse Results
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.