MassIVE MSV000097957

Partial Public PXD064164

JMod: Joint modeling of mass spectra for empowering multiplexed DIA proteomics

Description

The throughput of mass spectrometry (MS) proteomics can be increased substantially by multiplexing that enables parallelization of data acquisition. Such parallelization in the mass domain (plexDIA) and the time domain (timePlex) increases the density of mass spectra and the overlap between ions originating from different precursors. To enhance sequence identification and quantification from such spectra, we developed an open source software for joint modeling: JMod. It uses the intrinsic structure in the spectra and explicitly models overlapping peaks as linear superpositions of their components. This modeling enabled performing 9-plexDIA using 2 Da offset PSMtags by deconvolving the resulting overlapping isotopic envelopes in both MS1 and MS2 space. The results demonstrate 9-fold higher throughput with preserved quantitative accuracy and coverage depth. This support for smaller mass offsets increases multiplexing capacity and thus proteomic throughput for a given plexDIA tag, and we demonstrate this generalizability with diethyl labeling. By supporting enhanced decoding of DIA spectra multiplexed in the mass and time domains, JMod provides an open and flexible software for increasing the throughput of sensitive proteomics. [doi:10.25345/C55M62K8V] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: DIA ; plexDIA ; PSMtag ; DatasetType:Proteomics

Contact

Principal Investigators:
(in alphabetical order)
Nikola Slavov, Northeastern University, USA
Submitting User: kevinmcdonnell
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
Browse Metadata
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.