MassIVE MSV000095928

Partial Public PXD056090

Protective Effects of FXI Inhibition by Abelacimab in a Baboon Model of live Staphylococcus aureus Sepsis

Description

Sepsis remains a major clinical challenge characterized by dysregulated immune response, coagulation abnormalities, and multi-organ failure, leading to high morbidity and mortality. This study investigates the therapeutic potential of Abelacimab, a novel monoclonal antibody targeting the plasma zymogen coagulation fFactor XI/XIa (FXI/XIa), in a baboon model of live Staphylococcus aureus sepsis. Healthy Papio anubis baboons were randomly assigned to either a control or a treatment group receiving Abelacimab. Both groups (n=6, each) were intravenously infused with a LD50 dose of live S. aureus. The treatment group was administered Abelacimab, 30 minutes after bacterial infusion. Hematologic, coagulation, inflammatory, and organ function parameters were monitored for 7 days or until the animals exhibited signs of irreversible organ failure. Proteomic analysis was conducted to elucidate the underlying mechanisms by which Abelacimab offered protection. All six Abelacimab-treated baboons survived to the 7-day endpoint, while three out of six untreated controls succumbed to sepsis within 102 hours. Abelacimab significantly attenuated sepsis-induced consumptive coagulopathy, as evidenced by coagulation and fibrinolysis markers. Treated animals showed decreased levels of pro-inflammatory cytokines, reduced neutrophil activation, and preservation of endothelial integrity, leading to reduced organ damage. Proteomic analysis revealed that Abelacimab modulated pathways related to coagulation, inflammation, and tissue injury, contributing to improved survival outcomes. We found that FXI/XIa inhibition by Abelacimab offers significant protection in a model of live S. aureus sepsis by attenuating activation of coagulation factors, reducing inflammation, and preventing organ failure. These findings suggest that targeting FXI may be a promising therapeutic strategy for managing sepsis, addressing multiple facets of its complex pathophysiology. [doi:10.25345/C55T3GB55] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Abelacimab ; sepsis ; baboon model ; Staphylococcus aureus ; organ failure

Contact

Principal Investigators:
(in alphabetical order)
Florea Lupu, Oklahoma Medical Research Foundation, United States
Submitting User: sbyrum
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
Browse Metadata
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.