MassIVE MSV000097991

Partial Public PXD064286

Multiomic analysis identifies VPA induced changes in neural progenitor cells, ventricular-like regions and cellular microenvironment in dorsal forebrain organoids

Description

Pharmaceutical agents, such as antiepileptic medications, can cross fetal barriers and affect the developing brain. Prenatal exposure to the antiepileptic drug valproate (VPA) is associated with an increased risk of neurodevelopmental disorders, including congenital malformations and autism spectrum disorder. VPA-treated animal models and neural organoids proposed defects in intracellular mechanisms such as Wnt signaling underlying VPA-induced neurodevelopmental adversities. However, the influence of extracellular mechanisms on these defects remains unexplored. Here, we showed that VPA treatment disrupted ventricular-like regions, suggesting defects in cell-cell and cell-matrix interactions. Transcriptomics analyses confirmed the disruption of ECM secretion as well as intracellular processes related to microenvironment sensing, such as cellular mechanosensing and Hippo-YAP/TAZ signaling pathway. Finally, proteomics analysis corroborated that VPA alters the microenvironment of the human dorsal forebrain organoids by disrupting the secretion of extracellular matrix (ECM) proteins. Altogether, our study suggests VPA-treated dorsal forebrain organoids serve as a model to investigate the role of extracellular processes in brain development and to understand how their disruptions might contribute to neurodevelopmental disorders. [doi:10.25345/C5S756Z00] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: DIA, Proteomics, Secretome, Proteome, VPA, Neural Organoids, ; DatasetType:Proteomics

Contact

Principal Investigators:
(in alphabetical order)
Mohamed Ali Jarboui, Core Facility Medical Proteomics, University Clinic Tuebingen, Germany
Submitting User: Dali77
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
Browse Metadata
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.