MassIVE MSV000092688

Partial Public

Effect of jasmonic acid (JA) on the metabolome of actinobacteria

Description

Actinobacteria are prevalent in the rhizosphere and phyllosphere of diverse plant species where they help to enhance tolerance of plants against biotic and abiotic stresses. Here, we show that the plant hormones jasmonic acid (JA) and methyljasmonate (MeJA) alter growth, development and specialized metabolism of Streptomyces. Exposure of Streptomyces coelicolor to JA or MeJA led to enhanced production of the polyketide antibiotic actinorhodin. JA also exhibited toxicity towards Streptomycetaceae, whereby streptomycetes were more tolerant to JA than members of the genus Streptacidiphilus. This defensive response was associated with amino acid conjugation of JA with glutamine (Gln)-JA as the most prevalent conjugant, while conjugates with Val, Tyr, Phe and Leu/Ile were identified after longer exposure to JA. Synthetic JA conjugates failed to activate antibiotic production and showed significantly reduced toxicity. Thus, our findings shed light on a previously unknown defense mechanism deployed by Streptomyces, with amino acid conjugation protecting against the toxic effects of plant hormones. This study adds to the growing body of evidence that plant hormones can have a significant impact on members of the plant microbiome by affecting their growth, development, and secondary metabolism. [doi:10.25345/C5PG1HZ72] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: plant hormones-jasmonic acid-Streptomyces-Streptacidiphilus-amino acid conjugation

Contact

Principal Investigators:
(in alphabetical order)
Gilles van Wezel, Institute of Biology, Leiden University,, The Netherlands
Submitting User: selsayed
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
Browse Metadata
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.