MassIVE MSV000084374

Imported Reanalysis Dataset Public PXD010162

Investigation of cytoplasmic cGAS interactions reveals association with OASL during HSV-1 infection

Description

Viral DNA sensing is an essential component of mammalian innate immune response. Upon binding viral DNA, the cyclic-GMP-AMP synthase (cGAS) catalyzes the production of cyclic dinucleotides to induce type I interferons. However, little is known about how cGAS is homeostatically maintained or regulated upon infection. Here, we define cytoplasmic cGAS interactions with cellular and viral proteins upon herpes simplex virus (HSV-1) infection in primary human fibroblasts. We compare several HSV-1 strains (wild-type, d109, d106) that induce cytokine responses and apoptosis, and place cGAS interactions in the context of temporal proteome alterations using isobaric-labeling mass spectrometry. Follow-up analyses establish a functional interaction between cGAS and 2â??-5â??-oligoadenylate synthase-like protein OASL. The OAS-like domain interacts with the cGAS Mab21 domain, while the OASL ubiquitin-like domain further inhibits cGAS-mediated interferon response. Our findings explain how cGAS may be inactively maintained in cellular homeostasis, with OASL functioning as a negative feedback loop for cytokine induction. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: cGAS ; IP-MS ; TMT ; OASL ; interactions ; DNA sensing

Contact

Principal Investigators:
(in alphabetical order)
Ileana M Cristea, Department of Molecular Biology, Princeton University, USA, N/A
Submitting User: ccms

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.