MassIVE MSV000094186

Complete Public PXD050197

Oligonucleotide-mediated proximity-interactome mapping (O-MAP): A unified method for discovering RNA-interacting proteins, transcripts and genomic loci in situ.

Description

Within all cells, RNA molecules form complex networks of molecular interactions that are central to their function, but discovering these interactions remains challenging. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a straightforward method for elucidating the biomolecules near an RNA of interest, within its native cellular context. O-MAP uses programmable DNA probes to deliver proximity-biotinylating enzymes to a target RNA, enabling molecules within that RNA's subcellular microcompartment to be enriched by streptavidin pulldown. O-MAP induces exceptionally precise in situ biotinylation, and unlike alternative methods it enables straightforward optimization of its RNA-targeting accuracy. Using the 47S pre-ribosomal RNA and long noncoding RNA Xist as models, we develop O-MAP workflows for unbiased discovery of RNA-proximal proteins, transcripts, and genomic loci. This revealed unexpected co-compartmentalization of Xist and other chromatin-regulatory RNAs, and enabled systematic discovery of nucleolar-chromatin interactions across multiple cell lines. O-MAP uses exclusively off-the-shelf parts requiring no genetic- or cell-line engineering and is easily portable across diverse specimen-types and target RNAs. We therefore anticipate its application to a broad array of RNA phenomena. [doi:10.25345/C5CC0V477] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: OMAP

Contact

Principal Investigators:
(in alphabetical order)
David Shechner, University of Washington, United States
Submitting User: cmcgann
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files Browse Results
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.