MassIVE MSV000083475

Partial Public

GNPS - Earth Microbiome Project - EMP500 - Metabolomics v2 - Q-Exactive

Description

EMP500 - http://www.earthmicrobiome.org/emp500/ The Earth Microbiome Project is a systematic attempt to characterize global microbial taxonomic and functional diversity for the benefit of the planet and humankind. The Earth Microbiome Project (EMP) is a massively collaborative effort to characterize microbial life on this planet. We use DNA sequencing and mass spectrometry of crowd-sourced samples to understand patterns in microbial ecology across the biomes and habitats of our planet. The EMP is a comprehensive example of open science, leveraging a collaborative network of 500+ investigators, supporting pre-publication data sharing, and crowdsourcing data analysis to enable universal principles to be explored. The standardized collection, curation, and analysis are enabling a robust interpretation of ecological trends.ls for metagenomic sequencing and assembly, with the goal of applying this workflow to a range of environmental samples, combined with metabolomic profiling. Our goal was to assemble a set of ~500 fresh environmental samples across a range of habitats, with the help of the EMP network of collaborators. We are doing traditional EMP amplicon sequencing, metagenomic sequencing (with assembly-free and assembly-based analysis), and metabolomics on these 500 samples. A biobank of frozen aliquots of samples is being maintained at UCSD (soil samples at PNNL) for future methods testing and analysis. [doi:10.25345/C5CG8S] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Earth Microbiome Project ; Sequencing ; Soil ; Sediment ; Animal ; Water ; Plant

Contact

Principal Investigators:
(in alphabetical order)
Pieter Dorrestein, University of California San Diego, USA
Rob Knight, University of California San Diego, USA
Submitting User: lfnothias
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


GNPS content goes here (MSV000083475 [task=3de2b5de5c274ca6b689977d08d84195])
Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.