MassIVE MSV000086195

Complete Public PXD021652

Skeletal Muscle Proteomics of High Functioning Octogenarians

Description

Skeletal muscle mass and function decline more precipitously after the age 75 y. To provide insights into biologically relevant mechanisms for preserving muscle mass and physical function in advanced age, a battery of physical function tests, muscle cross-sectional area by MRI and a vastus lateralis muscle biopsy were performed in 15 octogenarian world class track and field masters athletes (MA) and 14 non-athlete age- and sex-matched controls (NA). Muscle samples were analyzed using liquid-chromatography mass spectrometry to generate proteomics data, by histochemistry to identify respiratory compromised muscle fibers, and by quantitative real-time polymerase chain reaction to estimate mtDNA copy number. Physical function and muscle cross-sectional area were higher in MA than NA. Of nearly 6,000 proteins identified and quantified in muscle biopsy specimens, ~800 were differentially represented in MA versus NA. Most of the differentially represented proteins related to mitochondrial structure and function and were overrepresented in muscle of MA versus controls, including TCA cycle, respiratory electron transport capacity (ETC), cristae formation, sirtuins, and 8 mtDNA-encoded proteins. On the contrary, proteins from the spliceosome complex and nuclear pore were downregulated in MA. Consistent with proteomics, MA had fewer respiratory compromised fibers, higher mtDNA copy number, and an increased protein ratio of the cristae-bound ETC subunits relative to the outer mitochondrial membrane protein voltage dependent anion channel. In conclusion, high physical function in advanced age is associated with preservation of mitochondrial health and function, with underrepresentation of proteins that process pre-RNA and determine splicing variants, and underrepresentation of nuclear pore proteins. [doi:10.25345/C5QJ42] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Octogenarians, Master Athlete, Mitochondria, Spliceosome, Skeletal Muscle, Aging, Exercise, Physical Activity, Nuclear pore

Contact

Principal Investigators:
(in alphabetical order)
Luigi Ferrucci, National Institute on Aging, United States
Russell T. Hepple, Department of Physical Therapy and Department of Physiology & Functional Genomics, University of Florida, United States
Submitting User: Mohien

Publications

Ubaida-Mohien C, Spendiff S, Lyashkov A, Moaddel R, MacMillan NJ, Filion ME, Morais JA, Taivassalo T, Ferrucci L, Hepple RT.
Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians.
Elife. Epub 2022 Apr 11.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files Browse Results
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.