MassIVE MSV000092882

Partial Public PXD045426

Global proteomics insights for a novel small compound targeting the non-integrin Laminin Receptor in a macrophage cell model

Description

Monocytes and macrophages are the first barrier of the innate immune system, which interact with agents causing osteoarthritis or other conditions, leading to the release of proinflammatory mediators that exacerbate inflammation. The aim of this study was to investigate the proteomic changes in THP-1 monocytes differentiated to macrophages, pre- or -post small compound treatments and in the presence or absence of a proinflammatory stimulus, Lipopolysaccharide (LPS). This study aimed to discover and isolate small compounds that mimic the interaction between Pigment derived growth factor (PEDF) and its 37/67kDa Laminin receptor (LR) with potential anti-inflammatory activity. Our results suggested that novel compounds targeting the LR-PEDF interface can be useful for modulating anti-inflammatory effects. Several compounds were selected based on in silico docking at the PEDF/LR interface and examined for their ability to reduce IL1B expression in a macrophage cell model. Compound C3 showed the highest efficacy in reducing IL1B expression in the presence of LPS proinflammatory stimulus. Proteomics analysis revealed that C3 treatment altered the global proteomic profile of THP-1 activated macrophages, affecting pathways such as MYC targets, oxidative phosphorylation, and mTORC1 signaling. The analysis also highlighted the involvement of key regulators, including RPSA and MYC, and their interactions with other proteins such as ribosome proteins and cell cycle regulators. Furthermore, the downregulated proteome analysis revealed shared and unique pathways affected by the treatments, including processes related to actin cytoskeleton, translation, and inflammatory response. Protein-protein interaction networks suggested the potential involvement of transcription factors like MYC and the interconnectedness of signaling pathways in mediating the effects of the treatments. Overall, these findings provide valuable insights into the potential anti-inflammatory activity and underlying mechanisms of compound C3, emphasizing its relevance for further investigation in the context of inflammatory conditions. [doi:10.25345/C5GT5FR7N] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: small molecules ; PEDF ; non-integrin laminin receptor ; RPSA ; drug discovery ; anti-inflammatory ; macrophages

Contact

Principal Investigators:
(in alphabetical order)
Marxa L Figueiredo, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue, United States
Submitting User: tiagosobreira
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.