Aging is the most important risk factor for the development of cardiovascular diseases. Senescent cells release plethora of factors commonly known as the senescence-associated secretory phenotype (SASP), which can modulate the normal function of the vascular wall. It is currently not well understood if and how endothelial cell senescence can affect adventitial niche. The aim of this study was to characterize oxidative stress-induced endothelial cells senescence and identify their paracrine effects on the primary cell type of the adventitia, the fibroblasts. Human aortic endothelial cells (HAEC) were treated with hydrogen peroxide to induce premature senescence. Mass spectrometry analysis identified several proteomic changes in senescent HAEC with top upregulated secretory protein growth differentiation factor 15 (GDF-15). Treatment of the human adventitial fibroblast cell line (hAdv cells) with conditioned medium (CM) from senescent HAEC resulted in alterations in the proteome of hAdv cells identified in mass spectrometry analysis. Majority of differentially expressed proteins in hAdv cells treated with CM from senescent HAEC were involved in the uptake and metabolism of lipoproteins, mitophagy and ferroptosis. We next analyzed if some of these changes and pathways might be regulated by GDF-15. We found that recombinant GDF-15 affected some ferroptosis-related factors (e.g. ferritin) and decreased oxidative stress in the analyzed adventitial fibroblast cell line, but it had no effect on erastin-induced cell death. Contrary, silencing of GDF-15 in hAdv cells was protective against this ferroptotic stimuli. Our findings provide a better understanding of the biology of senescent cells and can be of importance for potential therapeutic strategies targeting cell senescence or ferroptosis to alleviate vascular diseases.
[doi:10.25345/C5GQ6RC9R]
[dataset license: CC0 1.0 Universal (CC0 1.0)]
Keywords: adventitial fibroblasts ; endothelial cell senescence ; ferroptosis ; GDF-15 ; oxidative stress
Principal Investigators: (in alphabetical order) |
Agnieszka Jazwa-Kusior, Jagiellonian University, Poland |
Submitting User: | Urszula |
Sarad K, Jankowska U, Skupien-Rabian B, Babler A, Kramann R, Dulak J, Ja?wa-Kusior A.
Senescence of endothelial cells promotes phenotypic changes in adventitial fibroblasts: possible implications for vascular aging.
Mol Cell Biochem. Epub 2024 May 14.
Number of Files: | |
Total Size: | |
Spectra: | |
Subscribers: | |
Owner | Reanalyses | |
---|---|---|
Experimental Design | ||
Conditions:
|
||
Biological Replicates:
|
||
Technical Replicates:
|
||
Identification Results | ||
Proteins (Human, Remapped):
|
||
Proteins (Reported):
|
||
Peptides:
|
||
Variant Peptides:
|
||
PSMs:
|
||
Quantification Results | ||
Differential Proteins:
|
||
Quantified Proteins:
|
||
Browse Dataset Files | |
FTP Download Link (click to copy):
|