MassIVE MSV000092897

Partial Public PXD045499

Staphylococcus aureus LukAB stem domain unlatching influences toxin oligomerization

Description

Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases and is notorious for antibiotic resistance. S. aureus utilizes a family of pore-forming toxins, known as bi component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A, leukocidin B), a toxin that is secreted as a soluble heterodimer and assembles into an octameric beta barrel pore that is embedded in the host cell membrane, resulting in death of the host cell. The established cellular receptor for LukAB is CD11b of the Mac1 complex. LukAB variants from S. aureus clonal complexes (CC) 30 and 45 were recently described to use the proton channel hydrogen voltage gated channel 1 (HVCN1) as a receptor. Here we show that HVCN1 is an essential receptor used by all LukAB variants representing the major S. aureus clonal complexes, including CC8 LukAB, which belongs to the most prevalent lineage responsible for skin and soft tissue infections in the United States. We demonstrate that while each receptor is sufficient to recruit CC8 LukAB to the plasma membrane of phagocytes, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contribute to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow CC8 LukAB to bypass the requirement for CD11b. We discovered thirty mutations primarily localized in the stem domain of LukA and LukB that enabled LukAB to exhibit enhanced cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting experiments we show these mutations alter the solvent accessibility of the stem domain which prime LukAB for oligomerization. Together, our data allow us to introduce a role for CD11b beyond toxin recruitment to the target cell: we propose a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization, driving pore-formation. The mass spectrometric raw files for the hydroxyl radical footprinting experiment are included here. [doi:10.25345/C5JM23S3F] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Staphylococcus aureus ; LukAB ; stem domain ; hydroxyl radical protein footprinting

Contact

Principal Investigators:
(in alphabetical order)
Beatrix Ueberheide, NYU Langone Health, USA
Submitting User: Trixi
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.