MassIVE MSV000080762

Imported Reanalysis Dataset Public PXD002172

miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signaling in human colorectal adenocarcinoma cells

Description

Oxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major unsolved problem. Consequently, predictive markers and a better understanding of resistance mechanisms are urgently needed. To investigate if the recently identified predictive miR-625-3p is functionally involved in oxPt resistance, stable and inducible models of miR-625-3p dysregulation were analyzed. Ectopic expression of miR-625-3p in CRC cells led to increased resistance towards oxPt. The mitogen-activated protein kinase (MAPK) kinase 6 (MAP2K6/MKK6) – an activator of p38 MAPK - was identified as a functional target of miR-625-3p, and, in agreement, was down-regulated in patients not responding to oxPt therapy. The miR-625-3p resistance phenotype could be reversed by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signaling as a possible driving force behind oxPt resistance. We conclude that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: kf

Contact

Principal Investigators:
(in alphabetical order)
Jesper Velgaard Olsen, Univesity of Copenhagen, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, Proteomics Program, N/A
Submitting User: ccms

Publications

Rasmussen MH, Lyskjær I, Jersie-Christensen RR, Tarpgaard LS, Primdal-Bengtson B, Nielsen MM, Pedersen JS, Hansen TP, Hansen F, Olsen JV, Pfeiffer P, Ørntoft TF, Andersen CL.
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.
Nat Commun. Epub 2016 Aug 16.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.