Globally, burns are a significant cause of injury that can cause substantial acute trauma as well as lead to increased incidence of chronic co-morbidity and disease. To date, research has primarily focused on the systemic response severe injury, with little in the literature reported on impact of non-severe injuries (<15% total burn surface area; TBSA). To elucidate the metabolic consequences of non-severe burn injury, longitudinal plasma was collected from adults (n=35) who presented at hospital with a non-severe burn injury at admission, and at 6 week follow up. A cross-sectional baseline sample was also collected from non-burn control participants (n=14). Samples underwent multiplatform metabolic phenotyping using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry to quantify 112 lipoprotein and glycoproteins signatures and 852 lipid species from across 20 subclasses.
Multivariate data modelling (Orthogonal projection to latent structures-discriminate analysis) revealed alterations in lipoprotein and lipid metabolism when comparing baseline control to hospital admission samples, with the phenotypic signature found to be sustained at follow up. Univariate (Mann-Whitney U) testing and OPLS-DA indicated specific increases in GlycB (p-value <1.0e-4), low density lipoprotein-2 subfractions (Variable importance in projection score; VIP >6.83e-1) and monoacyglyceride (20:4)(p-value <1.0e-4) and decreases in circulating anti-inflammatory high-density lipoprotein-4 subfractions (VIP >7.75e-1), phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols and phosphatidylserines.
The results indicate a persistant systemic metabolic phenotype that occurs even in cases of non-severe burn injury. The phenotype is indicative of an accute inflammatory profile which continues to be sustained post-injury, suggesting an impact on systems health beyond the site of injury. The phenotypes contained metabolic signatures consistent with chronic inflammatory states reported to have elevated incidence post- burn injury. Such phenotypic signatures may provide patient stratification opportunities, to identify individual responses to injury, personalise intervention strtegies and improve acute care, reducing risk of chronic co-morbidity.
[doi:10.25345/C5X34N282]
[dataset license: CC0 1.0 Universal (CC0 1.0)]
Keywords: Burn injury ; Non-severe burn ; Thermal injury ; Inflammation ; Metabolic phenotyping ; Lipids ; Liquid chromatography-tandem mass spectrometry
Principal Investigators: (in alphabetical order) |
Monique Ryan, Murdoch University, Australia |
Submitting User: | monique_ryan |
Number of Files: | |
Total Size: | |
Spectra: | |
Subscribers: | |
Owner | Reanalyses | |
---|---|---|
Experimental Design | ||
Conditions:
|
||
Biological Replicates:
|
||
Technical Replicates:
|
||
Identification Results | ||
Proteins (Human, Remapped):
|
||
Proteins (Reported):
|
||
Peptides:
|
||
Variant Peptides:
|
||
PSMs:
|
||
Quantification Results | ||
Differential Proteins:
|
||
Quantified Proteins:
|
||
Browse Dataset Files | |
FTP Download Link (click to copy):
|