MassIVE MSV000096424

Partial Public PXD057934

Distinct Gene Regulatory Dynamics Drive Skeletogenic Cell Fate Convergence During Vertebrate Embryogenesis

Description

Cell type repertoires have expanded extensively in metazoan animals, with some clade-specific cells being paramount to their evolutionary success. A prime example are the skeletogenic cells of the developing vertebrate endoskeleton. Depending on anatomical location, these cells originate from three different embryonic precursor lineages, yet they converge developmentally towards similar cellular phenotypes. Furthermore, these embryonic lineages have gained skeletogenic competency at distinct timepoints during vertebrate evolution, thus questioning to what extent different parts of the vertebrate skeleton rely on truly homologous cell types. Here, we investigate how lineage-specific molecular properties of the three precursor pools are integrated at the gene regulatory level, to allow for phenotypic convergence towards a skeletogenic cell fate. Using single-cell transcriptomics and chromatin accessibility profiling along the precursor-to-skeletogenic cell continuum, we examine the gene regulatory dynamics associated with this cell fate convergence. We find that distinct transcription factor profiles are inherited and integrated from the three precursor states, and that lineage-specific enhancer elements incorporate these different inputs at the cis-regulatory level. This lineage-specific gene regulatory logic for skeletogenic convergence from three embryonic precursor pools suggests that early skeletal cells in different body parts are distinct cell types. Their regulatory uncoupling may render them amenable to individualized selection, to help to define distinct morphologies and biomaterial properties in the different parts of the vertebrate skeleton. [doi:10.25345/C5JM23T4C] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: cell type evolution, cell fate convergence, vertebrate skeletogenesis, gene regulatory evolution, single-cell functional genomics ; DatasetType:Proteomics

Contact

Principal Investigators:
(in alphabetical order)
Alexander Schmidt, Biozentrum, Universtiy of Basel, 4056 Basel, Switzerland, N/A
Submitting User: verizy27
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.