MassIVE MSV000082948

Imported Reanalysis Dataset Public PXD007592

Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases

Description

Background MAP kinase inhibitor (MAPKi) therapy for BRAF mutated melanoma is characterized by high response rates but also development of drug resistance within a median progression-free survival (PFS) of 9 to 12 months. Understanding mechanisms of resistance and identifying effective therapeutic alternatives is one of the most important scientific challenges in melanoma. Using proteomics, we want to specifically gain insight into the pathophysiological process of cerebral metastases. Methods Cerebral metastases from melanoma patients were prepared for MS analysis by tryptic digestion. Mass spectrometric analysis was performed on a QExactive HF hybrid quadrupole-orbitrap mass spectrometer, equipped with a nanospray ion source, coupled with a nano HPLC system. Results In this pilot study, we were able to identify 5,977 proteins by LC-MS analysis. Samples were classified into good and poor responders based on PFS. By evaluating these proteomic profiles according to gene ontology (GO) terms, KEGG pathways and gene set enrichment analysis (GSEA), we could characterize differences between the two distinct groups. We further detected an EMT signature, V-type proton ATPases, calcium ion binding proteins, eukaryotic translation initiation factors, cell adhesion proteins and several transporter and exchanger proteins to be significantly up-regulated in poor responding patients, whereas good responders showed an immune-activation and involvement of extracellular matrix structural constituents, among other features. Subsequently we identified the most class-discriminating proteins based on nearest shrunken centroids. Conclusions Using proteomics helped to identify already known extra-cerebral resistance mechanisms in the cerebral metastases and further discovered possible brain specific mechanisms of drug efflux, which might serve as interesting targets, especially for treatment of these types of metastases or as predictive marker. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: BRAF mutation ; Cerebral melanoma metastases ; Drug resistance ; Melanoma ; MAP kinase inhibitor ; Proteomics

Contact

Principal Investigators:
(in alphabetical order)
Christopher Gerner, University of Vienna, Faculty of Chemistry, Department of Analytical Chemistry, N/A
Submitting User: ccms

Publications

Seiser S, Janker L, Zila N, Mildner M, Rakita A, Matiasek J, Bileck A, Gerner C, Paulitschke V, Elbe-Bürger A.
Octenidine-based hydrogel shows anti-inflammatory and protease-inhibitory capacities in wounded human skin.
Sci Rep. 2021 Jan 8;11(1):32. Epub 2021 Jan 8.

Zila N, Bileck A, Muqaku B, Janker L, Eichhoff OM, Cheng PF, Dummer R, Levesque MP, Gerner C, Paulitschke V.
Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases.
Clin Proteomics. Epub 2018 Mar 9.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files Browse Results
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.