MassIVE MSV000094080

Partial Public PXD049363

Species-specific variation in mental gland secretions of turtles revealed by proteomic and lipidomic profiling

Description

Chemical signaling through pheromones is an ancient and widespread mode of communication. Turtles and tortoises (chelonians) secrete pheromones via mental (chin) glands and have superior olfactory capacities rendering them a promising group to study the evolution and function of chemical communication in vertebrates. Here, we use state-of-the art proteomics and lipidomics techniques to identify and explore the possible functions of proteins and lipids secreted by mental glands in turtles. We examined four turtle species all from the family Geoemydidae, to understand among-species as well as sexual variation in the composition of mental gland secretions. Differential expression of a relatively small number (ca. 65) of proteins explained a large portion of the proteome variation across species, highlighting the existence of specific signals evolving even in closely related species. Lipidomic analysis revealed high inter-individual variation but species differences could be attributed to five differing lipid classes. The lipids found in mental glands could have a dietary origin or be related to individual condition but may nonetheless be used in communication. We also examined sex-specific differences in the proteome of a single species (Mauremys leprosa) and found that males expressed a much larger array of proteins than females. Our findings establish a group of candidate proteins potentially involved in chemical signaling freshwater geoemydid turtles. Alternatively, differently expressed proteins in mental glands could have an indirect link to chemical communication, being involved in pheromone transport and/or antioxidant protection. [doi:10.25345/C52J68G10] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Chemical communication ; Sexual dimorphism ; Epidermal glands ; Species-specific signals ; Reptiles

Contact

Principal Investigators:
(in alphabetical order)
Alejandro Ibanez, Institute of Zoology and Biomedical Research, Jagiellonian University, Poland
Submitting User: Urszula
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.