MassIVE MSV000094898

Partial Public

Longitudinal Analysis of the Lung Proteome Reveals Persistent Repair Months after Mild to Moderate COVID-19

Description

In order to assess the restoration of homeostasis in the lung proteome after COVID-19 infection, we performed bronchoalveolar lavage on 45 patients with mild to moderate disease at three phases (acute, recovery, convalescence) over a year. Changes in proteins were assessed using a multimodal approach. During the acute phase, inflamed and uninflamed phenotypes were characterized by the expression of tissue repair and host defense response molecules. With recovery, inflammatory and fibrogenic mediators declined and clinical symptoms abated. However, at nine months, quantified radiographic abnormalities had resolved in the majority of patients, and yet compared to healthy persons, all showed ongoing activation of cellular repair processes and depression of the renin-kallikrein kinin-coagulation and complement systems. This dissociation of prolonged reparative processes from symptom and radiographic resolution suggests that occult ongoing disruption of the lung proteome is underrecognized and may be relevant to recovery from other serious viral pneumonias. [doi:10.25345/C5CR5NQ2N] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: COVID-19 ; Proteomics ; lung injury ; SARS-CoV-2 ; data independent acquisition mass spectrometry ; proximal extension assay ; longitudinal

Contact

Principal Investigators:
(in alphabetical order)
Shreya Madisetty Kanth, National Institutes of Health, USA
Submitting User: CCMD

Publications

Kanth SM, Huapaya JA, Gairhe S, Wang H, Tian X, Demirkale CY, Hou C, Ma J, Kuhns DB, Fink DL, Malayeri A, Turkbey E, Harmon SA, Chen MY, Regenold D, Lynch NF, Ramelli S, Li W, Krack J, Kuruppu J, Lionakis MS, Strich JR, Davey R, Childs R, Chertow DS, Kovacs JA, Parizi PT, Suffredini AF, COVID-ARC Study Group.
Longitudinal analysis of the lung proteome reveals persistent repair months after mild to moderate COVID-19.
Cell Rep Med. Epub 2024 Jun 27.

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.