MassIVE MSV000094394

Partial Public

GNPS - Spirolactone, an unprecedented antifungal beta-lactone spiroketal macrolidemacrolides from Streptomyces iranensis

Description

Fungal infections pose a great threat to public health and the existing four classes of antifungals have limitations due to high toxicity, drug-drug interactions, and emerging drug-resistance. Streptomyces spp. represent an important source of antimicrobial substances, notably including the antifungal agent amphotericin B. The rapamycin-producer Streptomyces iranensis displayed strong antifungal activities against Aspergillus. Revisiting its genome revealed several intriguing biosynthetic gene clusters, including one unparalleled Type I polyketide synthase, which codes for uncharacterized metabolites. The identification of a novel macrolide spirolactone (1) was facilitated through CRISPR-based gene editing, HR-ESI-MS analysis, followed by fermentation and purification processes. Their structures and absolute configurations were confirmed by NMR, MS and X-ray crystallography. Spirolactone harbors an undescribed carbon skeleton with 13 chiral centers, featuring a rare beta-lactone moiety, a [6,6]-spiroketal ring, and an unprecedented 7-oxo-octylmalonyl-CoA extender unit. Spirolactone displayed profound antifungal effects against numerous fungal pathogens, e.g. the genus Talaromyces and several sections of Aspergillus including clinically relevant species such as Aspergillus niger and A. tubingensis (section Nigri), A. terreus (section Terrei) and the azol-resistant A. calidoustus (section Usti). Proteomics analysis revealed spirolactone potentially disrupted the integrity of fungal cell walls and induced the expression of stress-response proteins in A. niger. Spirolactone represents a new class of potential agents leading to combat fungal infections. [doi:10.25345/C5H12VK07] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: spirolactone ; Streptomyces iranensis

Contact

Principal Investigators:
(in alphabetical order)
Ling Ding, Technical University of Denmark, Denmark
Submitting User: yyds
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


GNPS content goes here (MSV000094394 [task=a05cf4f6573844a488dbb6945cad2b23])
Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.