We have used genome-wide proteomic profiling to examine leaves of hybrids for molecular phenotypes. Profiles of the proteome of maize leaves revealed hybrid-specific differences in the chloroplast and mitochondria; levels of their energy transduction complexes and ribosomes were selectively elevated 10-20% above mid-parent levels. Each of these protein machines is comprised of nuclear-encoded and organelle-encoded subunits and we refer to them as digenomic protein complexes. Expression heterosis of the organelle ribosome proteins was quantitatively predictive of growth heterosis in a set of hybrids. Ethylene biosynthetic enzyme levels were reduced in hybrids and an ethylene biosynthesis mutant in an inbred background partially phenocopied the molecular differences seen in hybrids indicating that reduced ethylene levels may play a role in maize heterosis.
[doi:10.25345/C5NX7C]
[dataset license: CC0 1.0 Universal (CC0 1.0)]
Keywords: heterosis ; quantitative proteomics ; digenomic complex ; organelle ribosome
Principal Investigators: (in alphabetical order) |
Steven P Briggs, UCSD, USA |
Submitting User: | zhouxinshen |
Number of Files: | |
Total Size: | |
Spectra: | |
Subscribers: | |
Owner | Reanalyses | |
---|---|---|
Experimental Design | ||
Conditions:
![]() |
||
Biological Replicates:
![]() |
||
Technical Replicates:
![]() |
||
Identification Results | ||
Proteins (Human, Remapped):
![]() |
||
Proteins (Reported):
![]() |
||
Peptides:
![]() |
||
Variant Peptides:
![]() |
||
PSMs:
![]() |
||
Quantification Results | ||
Differential Proteins:
![]() |
||
Quantified Proteins:
![]() |
||
Browse Dataset Files | |
FTP Download Link (click to copy):
|