MassIVE MSV000082985

Partial Public

Unbiased Proteomics Benchmarking of Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes

Description

Rationale: Human pluripotent stem cells-derived cardiomyocytes (hPSC-CMs) exhibit the properties of fetal CMs, which limit their applications. Various methods have been used to promote maturation of hPSC-CMs; however, there is a lack of an unbiased and comprehensive method for accurate benchmarking of hPSC-CM maturation. Objective: We aim to develop an unbiased proteomics method integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for accurate and comprehensive assessment of hPSC-CM maturation. Methods and Results: Utilizing hPSC-CMs from early- and late-stage two-dimensional monolayer culture and three-dimensional engineered cardiac tissue, we demonstrated high reproducibility and reliability of the top-down proteomics method, which enabled simultaneous quantification of contractile protein isoform expressions and their PTMs. This method allowed for the detection of known maturation-associated contractile protein alterations, and for the first time, identified contractile protein PTMs as promising new markers of maturation. By employing a global proteomics strategy, we identified candidate maturation markers important for sarcomere organization, cardiac excitability, and Ca2+ homeostasis; and validated these markers in the developing mouse cardiac ventricles. Conclusions: We established an unbiased proteomics method that can provide accurate and specific benchmarking of hPSC-CM maturation, and identified new markers of maturation. Furthermore, this integrated proteomics strategy laid a strong foundation for uncovering molecular basis underlying cardiac development and disease using hPSC-CMs. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: human pluripotent stem cells ; cardiovascular proteomics ; top-down mass spectrometry ; quantitative proteomics ; maturation

Contact

Principal Investigators:
(in alphabetical order)
Ying Ge, University of Wisconsin-Madison, United States of America
Submitting User: GeLab
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.