Rationale: Human pluripotent stem cells-derived cardiomyocytes (hPSC-CMs) exhibit the properties of fetal CMs, which limit their applications. Various methods have been used to promote maturation of hPSC-CMs; however, there is a lack of an unbiased and comprehensive method for accurate benchmarking of hPSC-CM maturation.
Objective: We aim to develop an unbiased proteomics method integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for accurate and comprehensive assessment of hPSC-CM maturation.
Methods and Results: Utilizing hPSC-CMs from early- and late-stage two-dimensional monolayer culture and three-dimensional engineered cardiac tissue, we demonstrated high reproducibility and reliability of the top-down proteomics method, which enabled simultaneous quantification of contractile protein isoform expressions and their PTMs. This method allowed for the detection of known maturation-associated contractile protein alterations, and for the first time, identified contractile protein PTMs as promising new markers of maturation. By employing a global proteomics strategy, we identified candidate maturation markers important for sarcomere organization, cardiac excitability, and Ca2+ homeostasis; and validated these markers in the developing mouse cardiac ventricles.
Conclusions: We established an unbiased proteomics method that can provide accurate and specific benchmarking of hPSC-CM maturation, and identified new markers of maturation. Furthermore, this integrated proteomics strategy laid a strong foundation for uncovering molecular basis underlying cardiac development and disease using hPSC-CMs.
[dataset license: CC0 1.0 Universal (CC0 1.0)]
Keywords: human pluripotent stem cells ; cardiovascular proteomics ; top-down mass spectrometry ; quantitative proteomics ; maturation
Principal Investigators: (in alphabetical order) |
Ying Ge, University of Wisconsin-Madison, United States of America |
Submitting User: | GeLab |
Number of Files: | |
Total Size: | |
Spectra: | |
Subscribers: | |
Owner | Reanalyses | |
---|---|---|
Experimental Design | ||
Conditions:
|
||
Biological Replicates:
|
||
Technical Replicates:
|
||
Identification Results | ||
Proteins (Human, Remapped):
|
||
Proteins (Reported):
|
||
Peptides:
|
||
Variant Peptides:
|
||
PSMs:
|
||
Quantification Results | ||
Differential Proteins:
|
||
Quantified Proteins:
|
||
Browse Dataset Files | |
FTP Download Link (click to copy):
|