DNA double-strand breaks (DSBs) contribute to genome instability, a key feature of cancer. DSBs are mainly repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). We investigated the role of an isoform of the multifunctional cyclin-dependent kinase 9, CDK9-55, in DNA repair, by generating CDK9-55-knockout HeLa clones (through CRISPR-36 Cas9), which showed potential HR dysfunction. A phosphoproteomic screening in these clones treated with camptothecin revealed that CDC23 (cell division cycle 23), a component of the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), is a new substrate of CDK9-55, with S588 being its putative phosphorylation site. Mutated non-phosphorylatable CDC23(S588A) affected the repair pathway choice by impairing HR and favouring error prone NHEJ. Moreover, CDC23(S588A) promoted the ubiquitination of UFL1, a recently identified HR player. Overall, CDK9-55 could guide APC/C in choosing the correct DNA repair pathway, possibly by regulating UFL1 stability. This CDK9 role should be considered when designing CDK-inhibitor-based cancer therapies.
[doi:10.25345/C5DR7G]
[dataset license: CC0 1.0 Universal (CC0 1.0)]
Keywords: Homologous Recombination ; DNA repair pathway choice ; CDK9 ; APC/C ; Phosphoproteomics ; LC-MS/MS
|
Principal Investigators: (in alphabetical order) |
Antonio Giordano, Sbarro Institute for Cancer Research and Molecular Medicine and Center of 16 Biotechnology, College of Science and Technology Temple University, United States |
| Submitting User: | tangh |
| Number of Files: | |
| Total Size: | |
| Spectra: | |
| Subscribers: | |
| Owner | Reanalyses | |
|---|---|---|
| Experimental Design | ||
|
Conditions:
|
||
|
Biological Replicates:
|
||
|
Technical Replicates:
|
||
| Identification Results | ||
|
Proteins (Human, Remapped):
|
||
|
Proteins (Reported):
|
||
|
Peptides:
|
||
|
Variant Peptides:
|
||
|
PSMs:
|
||
| Quantification Results | ||
|
Differential Proteins:
|
||
|
Quantified Proteins:
|
||
| Browse Dataset Files | |
|
FTP Download Link (click to copy):
|