MassIVE MSV000088028

Partial Public PXD028173

A novel chronic ANCA associated vasculitis model suitable for targeting reveals matrisomal changes

Description

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are severe inflammatory disorders that often lead to rapid and irreversible organ failure. Rapid progressive glomerulonephritis (RPGN) is a particularly frequent renal manifestation and often leads to extensive glomerular scarring and interstitial fibrosis, resulting in chronic kidney disease and end stage renal failure. Current management options of AAV and its sequelae are limited and common therapies have serious side effects that impair quality of life. A better understanding of the deleterious scarring process of AAV may help to identify novel mechanisms and potential targets for therapy. However, robust murine models of scarring RPGN are still lacking. Here, we present a novel murine model of severe RPGN that recapitulates both acute injury and the subsequent glomerular and interstitial scarring that is based on combined administration of antibodies against the glomerular basement membrane (GBM) and myeloperoxidase (MPO), and bacterial lipopolysaccharides (LPS). Renal injury presented with severe hematuria, glomerular necrosis and crescent formation at 12 days, and consequent glomerular scarring 29 days after initial treatment. We observed increased expression of matrisomal components such as collagens, fibronectin, tenascin-C, in accordance with human AAV as deduced from analysis of gene expression microarray data and tissue staining. Moreover, we observed tissue infiltration by neutrophils, macrophages, T cells and myofibroblasts upon injury. Inhibition of CXCR4 using AMD3100 led to histological and molecular changes in injury with reduced chemokine expression and lower immune cells activation. Using mass-spectrometric proteome analysis, we provide a comprehensive overview of molecular and cellular changes in our AAV model. Altogether, we demonstrate a novel RPGN model that enables the study of matrisomal changes both in disease and upon intervention, as exemplified via CXCR4 inhibition, which could prove to be a viable pharmacological tool and provide matrix as novel targeting opportunity. [doi:10.25345/C5682W] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: vasculitis, mouse, kidney, dia, anca associated vasculitis

Contact

Principal Investigators:
(in alphabetical order)
Oliver Schilling, University of Freiburg, N/A
Submitting User: miguelcos
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.