MassIVE MSV000090530

Partial Public

Apicobasal surfaceome architecture encodes for polarized epi-thelial functionality and depends on tumor suppressor PTEN

Description

The loss of apicobasal polarity during the epithelial-to-mesenchymal transition (EMT) is a hall-mark of cancer and metastasis. The key feature of this polarity in epithelial cells is the subdivision of the plasma membrane into apical and basolateral domains, with each orchestrating specific in-tra- and extracellular functions. Epithelial transport and signaling capacities are thought to be determined largely by the quality, quantity and nanoscale organization of proteins residing in these membrane domains, the apicobasal surfaceomes. Despite its implications for cancer, drug uptake and infection, our current knowledge of how the polarized surfaceome is organized and maintained is limited. Here we used chemoproteomic surfaceome scanning to establish proteo-type maps of apicobasal surfaceomes and reveal quantitative distributions of i.a. surface proteas-es, phosphatases and tetraspanins as potential key regulators of polarized cell functionality. We show further that tumor-suppressor PTEN regulates polarized surfaceome architecture and un-cover a potential role in collective cell migration. Our differential surfaceome analysis provides a molecular framework to elucidate polarized protein networks regulating epithelial functions and PTEN-associated cancer progression. [doi:10.25345/C5HX15W0K] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Epithelial polarity, Apicobasal, Apical membrane, Basolateral membrane, Cell surface, Sorting, Polarized trafficking, PTEN, Epithelial-mesenchymal transition, Collective cell migration

Contact

Principal Investigators:
(in alphabetical order)
Bernd Wollscheid, ETHZ, Switzerland
Submitting User: Sandra
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.