MassIVE MSV000092798

Partial Public

Genome-Scale Exon Perturbation Screens Uncover Critical Exons for Cell Fitness

Description

Although CRISPR-Cas technology has revolutionized functional genomics, the systematic exploration of the role of individual exons for critical cellular phenotypes is lagging, limiting our understanding of genome regulation. To overcome this constraint, we have optimized and applied massively parallel exon deletion and splice site mutation screens in human cell lines identifying thousands of exons required for cell fitness. Fitness-promoting exons are enriched in essential and highly expressed genes and frequently overlap protein domains and interaction interfaces. This contrasts fitness-suppressing exons that are enriched in low-expressed, non-essential genes and tend to overlap intrinsically disordered regions. In-depth mechanistic investigation of a screen hit, the alternative exon-8 in TAF5, reveals that its inclusion controls the assembly of the TFIID general transcription initiation complex regulating gene expression outputs. Collectively, by applying orthogonal exon perturbation screening strategies we have interrogated phenotypically important exons at genome-scale and uncovered mechanisms that control gene expression and cell fitness. [doi:10.25345/C5BK1708M] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: Alternative Splicing ; TAF5 ; TFIID ; Functional Genomics ; Gene Expression ; CRISPR-Screening ; Cell Fitness Exons ; pre-mRNA Processing ; Genetic Screening ; TATA-Binding Protein

Contact

Principal Investigators:
(in alphabetical order)
Thomas Gonatopoulos-Pournatizis, National Cancer Institute, United States
Submitting User: ronholes7059
Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.