MassIVE MSV000083565

Imported Reanalysis Dataset Public PXD002091

Positional proteomics reveals differences in N-terminal proteoform stability.

Description

To understand the impact of alternative translation initiation on a proteome, we performed the first large-scale study of protein turnover rates in which we distinguish between N-terminal proteoforms pointing to translation initiation events. Using pulsed SILAC combined with N-terminal COFRADIC we monitored the stability of 1,941human N-terminal proteoforms, including 147 proteoform pairs with heterogeneous N-termini originating from the same gene that result from alternative translation initiation and incomplete processing of the initiator methionine. N-terminally truncated proteoforms were on average less abundant than canonical proteoforms, many had different stabilities and exhibited both faster and slower turnover rates compared to their canonical counterparts. These differences in stability did not depend on the length of truncation but on individual protein characteristics. In silico simulation of N-terminal proteoforms in macromolecular complexes revealed possible consequences for complex integrity such as replacement of unstable canonical subunits. The extent of intrinsic disorder in N-terminal protein structures correlated with turnover times, indicating that a change in the structural flexibility of protein N-termini in truncated proteoforms might impact proteoform stability. Interestingly, removal of the initiator methionine by methionine aminopeptidases reduced the stability of processed proteoforms while susceptibility for N-terminal acetylation, another common co-translational modification, did not seem to impact on turnover rates. Taken together, our findings reveal differences in protein stability between N-terminal proteoforms and point to a role for alternative translation initiation and co-translational initiator methionine removal in the overall regulation of proteome homeostasis. [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: human ; N-terminal COFRADIC ; alternative translation initiation ; protein stability ; N-terminal proteoform ; Nt-acetylation ; initiator methionine processing ; protein turnover

Contact

Principal Investigators:
(in alphabetical order)
Prof. Dr. Kris Gevaert, VIB Department of Medical Protein Research, Ghent University, Belgium, N/A
Submitting User: ccms

Publications

Gawron D, Ndah E, Gevaert K, Van Damme P.
Positional proteomics reveals differences in N-terminal proteoform stability.
Mol. Syst. Biol. 2016 Feb 18;12(2):858. Epub 2016 Feb 18.

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.