MassIVE MSV000083149

Complete Public PXD011748

DART-ID increases single-cell proteome coverage

Description

Analysis by liquid chromatography and tandem mass spectrometry (LC-MS/MS) can identify and quantify thousands of proteins in microgram-level samples, such as those comprised of thousands of cells. Identifying proteins by LC-MS/MS proteomics, however, remains challenging for lowly abundant samples, such as the proteomes of single mammalian cells. To increase the identification rate of peptides in such small samples, we developed DART-ID. This method implements a data-driven, global retention time (RT) alignment process to infer peptide RTs across experiments. DART-ID then incorporates the global RT-estimates within a principled Bayesian framework to increase the confidence in correct peptide-spectrum-matches. Applying DART-ID to hundreds of samples prepared by the Single Cell Proteomics by Mass Spectrometry (SCoPE-MS) design increased the peptide and proteome coverage by 30 - 50% at 1% FDR. The newly identified peptides and proteins were further validated by demonstrating that their quantification is consistent with the quantification of peptides identified from high-quality spectra. DART-ID can be applied to various sets of experimental designs with similar sample complexities and chromatography conditions, and is freely available online. [doi:10.25345/C5KW3W] [dataset license: CC0 1.0 Universal (CC0 1.0)]

Keywords: retention time ; bayesian framework ; peptide identification ; computational ; single cell

Contact

Principal Investigators:
(in alphabetical order)
Nikolai Slavov, Northeastern University, USA
Submitting User: blahoink

Publications

Chen A, Franks A & Slavov N.
DART-ID increases single-cell proteome coverage.
biorXiv, DOI: 10.1101/399121. PLOS Comp Bio (submitted).

Chen A, Franks, A & Slavov, N.
DART-ID increases single-cell proteome coverage.
(submitted).

Number of Files:
Total Size:
Spectra:
Subscribers:
 
Owner Reanalyses
Experimental Design
    Conditions:
    Biological Replicates:
    Technical Replicates:
 
Identification Results
    Proteins (Human, Remapped):
    Proteins (Reported):
    Peptides:
    Variant Peptides:
    PSMs:
 
Quantification Results
    Differential Proteins:
    Quantified Proteins:
 
Browse Dataset Files Browse Results
 
FTP Download Link (click to copy):

- Dataset Reanalyses


+ Dataset History


Click here to queue conversion of this dataset's submitted spectrum files to open formats (e.g. mzML). This process may take some time.

When complete, the converted files will be available in the "ccms_peak" subdirectory of the dataset's FTP space (accessible via the "FTP Download" link to the right).
Number of distinct conditions across all analyses (original submission and reanalyses) associated with this dataset.

Distinct condition labels are counted across all files submitted in the "Metadata" category having a "Condition" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct biological replicates across all analyses (original submission and reanalyses) associated with this dataset.

Distinct replicate labels are counted across all files submitted in the "Metadata" category having a "BioReplicate" or "Replicate" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct technical replicates across all analyses (original submission and reanalyses) associated with this dataset.

The technical replicate count is defined as the maximum number of times any one distinct combination of condition and biological replicate was analyzed across all files submitted in the "Metadata" category. In the case of fractionated experiments, only the first fraction is considered.

"N/A" means no results of this type were submitted.
Originally identified proteins that were automatically remapped by MassIVE to proteins in the SwissProt human reference database.

"N/A" means no results of this type were submitted.
Number of distinct protein accessions reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct unmodified peptide sequences reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct peptide sequences (including modified variants or peptidoforms) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Total number of peptide-spectrum matches (i.e. spectrum identifications) reported across all analyses (original submission and reanalyses) associated with this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins quantified across all analyses (original submission and reanalyses) associated with this dataset.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
Number of distinct proteins found to be differentially abundant in at least one comparison across all analyses (original submission and reanalyses) associated with this dataset.

A protein is differentially abundant if its change in abundance across conditions is found to be statistically significant with an adjusted p-value <= 0.05 and lists no issues associated with statistical tests for differential abundance.

Distinct protein accessions are counted across all files submitted in the "Statistical Analysis of Quantified Analytes" category having a "Protein" column in this dataset.

"N/A" means no results of this type were submitted.
This dataset may not contain all raw spectra data as originally deposited in PRIDE. It has been imported to MassIVE for reanalysis purposes, so its spectra data here may consist solely of processed peak lists suitable for reanalysis with most software.